quillen equivalent
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 36 (2) ◽  
pp. 157-239
Author(s):  
Philippe Gaucher

This paper proves that the q-model structures of Moore flows and of multipointed d-spaces are Quillen equivalent. The main step is the proof that the counit and unit maps of the Quillen adjunction are isomorphisms on the q-cofibrant objects (all objects are q-fibrant). As an application, we provide a new proof of the fact that the categorization functor from multipointed d-spaces to flows has a total left derived functor which induces a category equivalence between the homotopy categories. The new proof sheds light on the internal structure of the categorization functor which is neither a left adjoint nor a right adjoint. It is even possible to write an inverse up to homotopy of this functor using Moore flows.


2021 ◽  
Vol 3 ◽  
pp. 3
Author(s):  
Philippe Gaucher

A reparametrization category is a small topologically enriched symmetric semimonoidal category such that the semimonoidal structure induces a structure of a commutative semigroup on objects, such that all spaces of maps are contractible and such that each map can be decomposed (not necessarily in a unique way) as a tensor product of two maps. A Moore flow is a small semicategory enriched over the closed semimonoidal category of enriched presheaves over a reparametrization category. We construct the q-model category of Moore flows. It is proved that it is Quillen equivalent to the q-model category of flows. This result is the first step to establish a zig-zag of Quillen equivalences between the q-model structure of multipointed d-spaces and the q-model structure of flows.


Author(s):  
Nima Rasekh

AbstractWe prove that four different ways of defining Cartesian fibrations and the Cartesian model structure are all Quillen equivalent: On marked simplicial sets (due to Lurie [31]), On bisimplicial spaces (due to deBrito [12]), On bisimplicial sets, On marked simplicial spaces. The main way to prove these equivalences is by using the Quillen equivalences between quasi-categories and complete Segal spaces as defined by Joyal–Tierney and the straightening construction due to Lurie.


Author(s):  
SERGIO ESTRADA ◽  
ALEXANDER SLÁVIK

We investigate the assumptions under which a subclass of flat quasicoherent sheaves on a quasicompact and semiseparated scheme allows us to ‘mock’ the homotopy category of projective modules. Our methods are based on module-theoretic properties of the subclass of flat modules involved as well as their behaviour with respect to Zariski localizations. As a consequence we get that, for such schemes, the derived category of flat quasicoherent sheaves is equivalent to the derived category of very flat quasicoherent sheaves. If, in addition, the scheme satisfies the resolution property then both derived categories are equivalent to the derived category of infinite-dimensional vector bundles. The equivalences are inferred from a Quillen equivalence between the corresponding models.


2018 ◽  
Vol 107 (02) ◽  
pp. 181-198
Author(s):  
JAMES GILLESPIE

We introduce what is meant by an AC-Gorenstein ring. It is a generalized notion of Gorenstein ring that is compatible with the Gorenstein AC-injective and Gorenstein AC-projective modules of Bravo–Gillespie–Hovey. It is also compatible with the notion of $n$ -coherent rings introduced by Bravo–Perez. So a $0$ -coherent AC-Gorenstein ring is precisely a usual Gorenstein ring in the sense of Iwanaga, while a $1$ -coherent AC-Gorenstein ring is precisely a Ding–Chen ring. We show that any AC-Gorenstein ring admits a stable module category that is compactly generated and is the homotopy category of two Quillen equivalent abelian model category structures. One is projective with cofibrant objects that are Gorenstein AC-projective modules while the other is an injective model structure with fibrant objects that are Gorenstein AC-injectives.


2018 ◽  
Vol 18 (4) ◽  
pp. 707-758 ◽  
Author(s):  
Dmitri Pavlov ◽  
Jakob Scholbach

This paper sets up the foundations for derived algebraic geometry, Goerss–Hopkins obstruction theory, and the construction of commutative ring spectra in the abstract setting of operadic algebras in symmetric spectra in an (essentially) arbitrary model category. We show that one can do derived algebraic geometry a la Toën–Vezzosi in an abstract category of spectra. We also answer in the affirmative a question of Goerss and Hopkins by showing that the obstruction theory for operadic algebras in spectra can be done in the generality of spectra in an (essentially) arbitrary model category. We construct strictly commutative simplicial ring spectra representing a given cohomology theory and illustrate this with a strictly commutative motivic ring spectrum representing higher order products on Deligne cohomology. These results are obtained by first establishing Smith’s stable positive model structure for abstract spectra and then showing that this category of spectra possesses excellent model-theoretic properties: we show that all colored symmetric operads in symmetric spectra valued in a symmetric monoidal model category are admissible, i.e., algebras over such operads carry a model structure. This generalizes the known model structures on commutative ring spectra and $\text{E}_{\infty }$-ring spectra in simplicial sets or motivic spaces. We also show that any weak equivalence of operads in spectra gives rise to a Quillen equivalence of their categories of algebras. For example, this extends the familiar strictification of $\text{E}_{\infty }$-rings to commutative rings in a broad class of spectra, including motivic spectra. We finally show that operadic algebras in Quillen equivalent categories of spectra are again Quillen equivalent. This paper is also available at arXiv:1410.5699v2.


2018 ◽  
Vol 167 (01) ◽  
pp. 107-121 ◽  
Author(s):  
DIMITRI ARA ◽  
DENIS-CHARLES CISINSKI ◽  
IEKE MOERDIJK

AbstractWe prove that the category of trees Ω is a test category in the sense of Grothendieck. This implies that the category of dendroidal sets is endowed with the structure of a model category Quillen-equivalent to spaces. We show that this model category structure, up to a change of cofibrations, can be obtained as an explicit left Bousfield localisation of the operadic model category structure.


Author(s):  
Stephen Lack

AbstractA Quillen model structure on the category Gray-Cat of Gray-categories is described, for which the weak equivalences are the triequivalences. It is shown to restrict to the full subcategory Gray-Gpd of Gray-groupoids. This is used to provide a functorial and model-theoretic proof of the unpublished theorem of Joyal and Tierney that Gray-groupoids model homotopy 3-types. The model structure on Gray-Cat is conjectured to be Quillen equivalent to a model structure on the category Tricat of tricategories and strict homomorphisms of tricategories.


Sign in / Sign up

Export Citation Format

Share Document