Locally finite coalgebras and the locally nilpotent radical II

2021 ◽  
pp. 1-11
Author(s):  
G. Santos Filho ◽  
L. Murakami ◽  
I. Shestakov
2013 ◽  
Vol 11 (12) ◽  
Author(s):  
Sergio Camp-Mora

AbstractA subgroup H of a group G is called ascendant-by-finite in G if there exists a subgroup K of H such that K is ascendant in G and the index of K in H is finite. It is proved that a locally finite group with every subgroup ascendant-by-finite is locally nilpotent-by-finite. As a consequence, it is shown that the Gruenberg radical has finite index in the whole group.


1996 ◽  
Vol 106 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Silvana Franciosi ◽  
Francesco de Giovanni ◽  
Yaroslav P. Sysak

2003 ◽  
Vol 46 (4) ◽  
pp. 597-616 ◽  
Author(s):  
Karl-Hermann Neeb ◽  
Ivan Penkov

AbstractLet V be a vector space over a field of characteristic zero and V* be a space of linear functionals on V which separate the points of V. We consider V ⊗ V* as a Lie algebra of finite rank operators on V, and set (V, V*) := V ⊗ V*. We define a Cartan subalgebra of (V, V*) as the centralizer of a maximal subalgebra every element of which is semisimple, and then give the following description of all Cartan subalgebras of (V;V*) under the assumption that is algebraically closed. A subalgebra of (V, V*) is a Cartan subalgebra if and only if it equals for some one-dimensional subspaces Vj ⊆ V and (Vj)* ⊆ V* with (Vi)* (Vj) = δij and such that the spaces . We then discuss explicit constructions of subspaces Vj and (Vj)* as above. Our second main result claims that a Cartan subalgebra of (V, V*) can be described alternatively as a locally nilpotent self-normalizing subalgebra whose adjoint representation is locally finite, or as a subalgebra h which coincides with the maximal locally nilpotent h-submodule of (V, V*), and such that the adjoint representation of is locally finite.


1962 ◽  
Vol 58 (2) ◽  
pp. 185-195
Author(s):  
J. E. Roseblade

A group G is called locally soluble if every finitely generated subgroup of G is soluble. Terms like ‘locally nilpotent’ and ‘locally finite’ are defined similarly.


1996 ◽  
Vol 38 (2) ◽  
pp. 171-176
Author(s):  
Silvana Franciosi ◽  
Francesco de Giovanni ◽  
Yaroslav P. Sysak

A famous theorem of Kegel and Wielandt states that every finite group which is the product of two nilpotent subgroups is soluble (see [1], Theorem 2.4.3). On the other hand, it is an open question whether an arbitrary group factorized by two nilpotent subgroups satisfies some solubility condition, and only a few partial results are known on this subject. In particular, Kegel [6] obtained an affirmative answer in the case of linear groups, and in the same article he also proved that every locally finite group which is the product of two locally nilpotent FC-subgroups is locally soluble. Recall that a group G is said to be an FC-group if every element of G has only finitely many conjugates. Moreover, Kazarin [5] showed that if the locally finite group G = AB is factorized by an abelian subgroup A and a locally nilpotent subgroup B, then G is locally soluble. The aim of this article is to prove the following extension of the Kegel–Wielandt theorem to locally finite products of hypercentral groups.


Author(s):  
D. H. McLain ◽  
P. Hall

1. If P is any property of groups, then we say that a group G is ‘locally P’ if every finitely generated subgroup of G satisfies P. In this paper we shall be chiefly concerned with the case when P is the property of being nilpotent, and will examine some properties of nilpotent groups which also hold for locally nilpotent groups. Examples of locally nilpotent groups are the locally finite p-groups (groups such that every finite subset is contained in a finite group of order a power of the prime p); indeed, every periodic locally nilpotent group is the direct product of locally finite p-groups.


1971 ◽  
Vol 10 (4) ◽  
pp. 219-224 ◽  
Author(s):  
G. V. Dorofeev

Sign in / Sign up

Export Citation Format

Share Document