On bézout domains, elementary divisor rings, and pole assignability

1984 ◽  
Vol 12 (24) ◽  
pp. 2987-3003 ◽  
Author(s):  
J.W. Brewer ◽  
C. Naudé ◽  
G. Naudé
2019 ◽  
Vol 18 (08) ◽  
pp. 1950141
Author(s):  
Huanyin Chen ◽  
Marjan Sheibani Abdolyousefi

A ring [Formula: see text] is an elementary divisor ring if every matrix over [Formula: see text] admits a diagonal reduction. If [Formula: see text] is an elementary divisor domain, we prove that [Formula: see text] is a Bézout duo-domain if and only if for any [Formula: see text], [Formula: see text] such that [Formula: see text]. We explore certain stable-like conditions on a Bézout domain under which it is an elementary divisor ring. Many known results are thereby generalized to much wider class of rings.


2015 ◽  
Vol 7 (2) ◽  
pp. 188-190 ◽  
Author(s):  
B.V. Zabavsky ◽  
O.V. Pihura

We introduce the Gelfand local rings. In the case of commutative Gelfand local Bezout domains we show that they are an elementary divisor domains.


2018 ◽  
Vol 10 (2) ◽  
pp. 402-407
Author(s):  
B.V. Zabavsky ◽  
O.M. Romaniv

We investigate   commutative Bezout domains in which any nonzero prime  ideal is contained in a finite set of maximal ideals. In particular, we have described the class of such rings, which are  elementary divisor rings. A ring $R$ is called an elementary divisor ring if every matrix over $R$ has a canonical diagonal reduction (we say that a matrix $A$ over $R$ has a canonical diagonal reduction  if for the matrix $A$ there exist invertible matrices $P$ and $Q$ of appropriate sizes and a diagonal matrix $D=\mathrm{diag}(\varepsilon_1,\varepsilon_2,\dots,\varepsilon_r,0,\dots,0)$ such that  $PAQ=D$  and $R\varepsilon_i\subseteq R\varepsilon_{i+1}$ for every $1\le i\le r-1$). We proved that a commutative Bezout domain $R$ in which any nonze\-ro prime ideal is contained in a finite set of maximal ideals and for any nonzero element $a\in R$  the ideal $aR$ a decomposed into a product $aR = Q_1\ldots Q_n$, where  $Q_i$ ($i=1,\ldots, n$) are pairwise comaximal ideals and $\mathrm{rad}\,Q_i\in\mathrm{spec}\, R$,  is an elementary divisor ring.


1974 ◽  
Vol 26 (6) ◽  
pp. 1380-1383 ◽  
Author(s):  
Thomas S. Shores ◽  
Roger Wiegand

Recall that a ring R (all rings considered are commutative with unit) is an elementary divisor ring (respectively, a Hermite ring) provided every matrix over R is equivalent to a diagonal matrix (respectively, a triangular matrix). Thus, every elementary divisor ring is Hermite, and it is easily seen that a Hermite ring is Bezout, that is, finitely generated ideals are principal. Examples have been given [4] to show that neither implication is reversible.


1988 ◽  
Vol 39 (4) ◽  
pp. 349-353
Author(s):  
B. V. Zabavskii
Keyword(s):  

1955 ◽  
Vol 7 ◽  
pp. 191-201 ◽  
Author(s):  
N. A. Wiegmann

Matrices with real quaternion elements have been dealt with in earlier papers by Wolf (10) and Lee (4). In the former, an elementary divisor theory was developed for such matrices by using an isomorphism between n×n real quaternion matrices and 2n×2n matrices with complex elements. In the latter, further results were obtained (including, mainly, the transforming of a quaternion matrix into a triangular form under a unitary similarity transformation) by using a different isomorphism.


2000 ◽  
Vol 55 (5) ◽  
pp. 1005-1006 ◽  
Author(s):  
A A Tuganbaev

1994 ◽  
Vol 167 (3) ◽  
pp. 547-556 ◽  
Author(s):  
D.D. Anderson ◽  
K.R. Knopp ◽  
R.L. Lewin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document