scholarly journals Commutative Bezout domains in which any nonzero prime ideal is contained in a finite set of maximal ideals

2018 ◽  
Vol 10 (2) ◽  
pp. 402-407
Author(s):  
B.V. Zabavsky ◽  
O.M. Romaniv

We investigate   commutative Bezout domains in which any nonzero prime  ideal is contained in a finite set of maximal ideals. In particular, we have described the class of such rings, which are  elementary divisor rings. A ring $R$ is called an elementary divisor ring if every matrix over $R$ has a canonical diagonal reduction (we say that a matrix $A$ over $R$ has a canonical diagonal reduction  if for the matrix $A$ there exist invertible matrices $P$ and $Q$ of appropriate sizes and a diagonal matrix $D=\mathrm{diag}(\varepsilon_1,\varepsilon_2,\dots,\varepsilon_r,0,\dots,0)$ such that  $PAQ=D$  and $R\varepsilon_i\subseteq R\varepsilon_{i+1}$ for every $1\le i\le r-1$). We proved that a commutative Bezout domain $R$ in which any nonze\-ro prime ideal is contained in a finite set of maximal ideals and for any nonzero element $a\in R$  the ideal $aR$ a decomposed into a product $aR = Q_1\ldots Q_n$, where  $Q_i$ ($i=1,\ldots, n$) are pairwise comaximal ideals and $\mathrm{rad}\,Q_i\in\mathrm{spec}\, R$,  is an elementary divisor ring.

2019 ◽  
Vol 18 (08) ◽  
pp. 1950141
Author(s):  
Huanyin Chen ◽  
Marjan Sheibani Abdolyousefi

A ring [Formula: see text] is an elementary divisor ring if every matrix over [Formula: see text] admits a diagonal reduction. If [Formula: see text] is an elementary divisor domain, we prove that [Formula: see text] is a Bézout duo-domain if and only if for any [Formula: see text], [Formula: see text] such that [Formula: see text]. We explore certain stable-like conditions on a Bézout domain under which it is an elementary divisor ring. Many known results are thereby generalized to much wider class of rings.


1974 ◽  
Vol 26 (6) ◽  
pp. 1380-1383 ◽  
Author(s):  
Thomas S. Shores ◽  
Roger Wiegand

Recall that a ring R (all rings considered are commutative with unit) is an elementary divisor ring (respectively, a Hermite ring) provided every matrix over R is equivalent to a diagonal matrix (respectively, a triangular matrix). Thus, every elementary divisor ring is Hermite, and it is easily seen that a Hermite ring is Bezout, that is, finitely generated ideals are principal. Examples have been given [4] to show that neither implication is reversible.


2018 ◽  
Vol 10 (1) ◽  
pp. 179-184
Author(s):  
A.M. Romaniv

For non-singular matrices with some restrictions, we establish the relationships between Smith normal forms and transforming matrices (a invertible matrices that transform the matrix to its Smith normal form) of two matrices with corresponding matrices of their least common right multiple over a commutative principal ideal domains. Thus, for such a class of matrices, given answer to the well-known task of M. Newman. Moreover, for such matrices, received a new method for finding their least common right multiple which is based on the search for its Smith normal form and transforming matrices.


2012 ◽  
Vol 11 (06) ◽  
pp. 1250112 ◽  
Author(s):  
PAUL-JEAN CAHEN ◽  
DAVID E. DOBBS ◽  
THOMAS G. LUCAS

For a pair of rings S ⊆ T and a nonnegative integer n, an element t ∈ T\S is said to be within n steps of S if there is a saturated chain of rings S = S0 ⊊ S1 ⊊ ⋯ ⊊ Sm = S[t] with length m ≤ n. An integral domain R is said to be n-valuative (respectively, finitely valuative) if for each nonzero element u in its quotient field, at least one of u and u-1 is within n (respectively, finitely many) steps of R. The integral closure of a finitely valuative domain is a Prüfer domain. Moreover, an n-valuative domain has at most 2n + 1 maximal ideals; and an n-valuative domain with 2n + 1 maximal ideals must be a Prüfer domain.


2007 ◽  
Vol 75 (3) ◽  
pp. 417-429 ◽  
Author(s):  
Ayman Badawi

Suppose that R is a commutative ring with 1 ≠ 0. In this paper, we introduce the concept of 2-absorbing ideal which is a generalisation of prime ideal. A nonzero proper ideal I of R is called a 2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. It is shown that a nonzero proper ideal I of R is a 2-absorbing ideal if and only if whenever I1I2I3 ⊆ I for some ideals I1,I2,I3 of R, then I1I2 ⊆ I or I2I3 ⊆ I or I1I3 ⊆ I. It is shown that if I is a 2-absorbing ideal of R, then either Rad(I) is a prime ideal of R or Rad(I) = P1 ⋂ P2 where P1,P2 are the only distinct prime ideals of R that are minimal over I. Rings with the property that every nonzero proper ideal is a 2-absorbing ideal are characterised. All 2-absorbing ideals of valuation domains and Prüfer domains are completely described. It is shown that a Noetherian domain R is a Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R. If RM is Noetherian for each maximal ideal M of R, then it is shown that an integral domain R is an almost Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R.


1984 ◽  
Vol 12 (24) ◽  
pp. 2987-3003 ◽  
Author(s):  
J.W. Brewer ◽  
C. Naudé ◽  
G. Naudé

2014 ◽  
Vol 6 (2) ◽  
pp. 360-366 ◽  
Author(s):  
O.S. Sorokin

It is proved that for a quasi-duo Bezout ring of stable range 1 the duo-ring condition is equivalent to being an elementary divisor ring. As an application of this result a couple of useful properties are obtained for finite homomorphic images of Bezout duo-domains: they are coherent morphic rings, all injective modules over them are flat, their weak global dimension is either 0 or infinity. Moreover, we introduce the notion of square-free element in noncommutative case and it is shown that they are adequate elements of Bezout duo-domains. In addition, we are going to prove that these elements are elements of almost stable range 1, as well as necessary and sufficient conditions for being square-free element are found in terms of regularity, Jacobson semisimplicity, and boundness of weak global dimension of finite homomorphic images of Bezout duo-domains.


Author(s):  
Elena Okhremchuk

The article analyses the methods of forming the aircraft flight schedule based on the classical theory of schedules as a theory of multi-stage systems. It is shown that the timetable is a system without interruptions, since each specific flight at a certain point in time is carried out by only one aircraft. In accordance with the theory of schedules, the optimal distribution of a discrete finite set of requirements serviced by deterministic systems with one or more devices is analysed under various assumptions about the nature of their maintenance. It is shown that the weakest assumption regarding the abstract operator, which translates many requirements into many agreed and executed plans, is the monotonic and unimodal behaviour of the corresponding functional of the generated plans. The possibilities of applying the theory of multi-stage systems to create the optimal schedule for medium or large airlines are investigated. The basic requirements for constructing a schedule are advanced. Mathematical models of the schedule are constructed taking into account the basic data of the current movement of aircraft in the area of ​​the airport or air hub. It has been established that if the base airports change their purpose and act as terminal arrival airports, the corresponding matrix elements are inversely symmetric, and with a rarefied spatial distribution of airports, the matrix can tend to diagonally dominant. A  comparative analysis of scheduling algorithms is performed (based on queuing models, based on lists with the distribution of flights over time, etc.). The most suitable indicators of the effectiveness of the formation of the optimal schedule and system of priorities were selected and justified, taking into account the advantages of the arrival and departure times of passenger flights. An expression is derived for the resulting functional schedule efficiency, with which you can get quantitative comparative assessments of the quality of the schedule.


1978 ◽  
Vol 30 (01) ◽  
pp. 95-101 ◽  
Author(s):  
L. J. Ratliff

All rings in this paper are assumed to be commutative with identity, and the undefined terminology is the same as that in [3]. In 1956, in an important paper [2], M. Nagata constructed an example which showed (among other things): (i) a maximal chain of prime ideals in an integral extension domain R' of a local domain (R, M) need not contract in R to a maximal chain of prime ideals; and, (ii) a prime ideal P in R' may be such that height P < height P ∩ R. In his example, Rf was the integral closure of R and had two maximal ideals. In this paper, by using Nagata's example, we show that there exists a finite local integral extension domain of D = R[X](M,X) for which (i) and (ii) hold (see (2.8.1) and (2.10)).


Author(s):  
L. Klingler ◽  
A. Omairi

In the 1960’s, Matlis defined an h h -local domain to be a (commutative) integral domain in which each nonzero element is contained in only finitely many maximal ideals and each nonzero prime ideal is contained in a unique maximal ideal. For rings with zero-divisors, by changing “nonzero” to “regular,” one obtains the definition of an h h -local ring. Nearly two dozen equivalent characterizations of h h -local domain have appeared in the literature. We show that most of these remain equivalent to h h -local ring if one also replaces “localization” by “regular localization” and assumes that the ring is a Marot ring (i.e., every regular ideal is generated by its regular elements).


Sign in / Sign up

Export Citation Format

Share Document