Numerical solution of steady MHD duct flow in a square annulus duct under strong transverse magnetic field

Author(s):  
M. Prasanna Jeyanthi ◽  
S. Ganesh
2019 ◽  
Vol 867 ◽  
pp. 661-690 ◽  
Author(s):  
Oleg Zikanov ◽  
Dmitry Krasnov ◽  
Thomas Boeck ◽  
Semion Sukoriansky

Decay of honeycomb-generated turbulence in a duct with a static transverse magnetic field is studied via direct numerical simulations. The simulations follow the revealing experimental study of Sukoriansky et al. (Exp. Fluids, vol. 4 (1), 1986, pp. 11–16), in particular the paradoxical observation of high-amplitude velocity fluctuations, which exist in the downstream portion of the flow when the strong transverse magnetic field is imposed in the entire duct including the honeycomb exit, but not in other configurations. It is shown that the fluctuations are caused by the large-scale quasi-two-dimensional structures forming in the flow at the initial stages of the decay and surviving the magnetic suppression. Statistical turbulence properties, such as the energy decay curves, two-point correlations and typical length scales are computed. The study demonstrates that turbulence decay in the presence of a magnetic field is a complex phenomenon critically depending on the state of the flow at the moment the field is introduced.


2021 ◽  
Vol 134 (2) ◽  
pp. 24003
Author(s):  
D. Krasnov ◽  
Ya. Listratov ◽  
Yu. Kolesnikov ◽  
I. Belyaev ◽  
N. Pyatnitskaya ◽  
...  

1969 ◽  
Vol 66 (3) ◽  
pp. 655-662 ◽  
Author(s):  
G. F. Butler

AbstractThis paper is concerned with the problem of the flow of an incompressible electrically conducting fluid along a rectangular duet under a transverse magnetic field. The case in which the walls perpendicular to the field are perfectly conducting and those parallel to the field are non-conducting has been considered by Hunt (1), who derives the solution in two ways; as the limiting cases of the flows with (a) non-conducting walls parallel and thin walls of arbitrary conductivity perpendicular to the field, and (b) thin walls of arbitrary conductivity parallel and perfectly conducting walls perpendicular to the field. We show that these two limiting solutions derived by Hunt are in fact equivalent. In addition, we extend the solution of case (b) above by removing the thin wall restriction.


Sign in / Sign up

Export Citation Format

Share Document