Processing of Lean Iron Ores by Dry High Intensity Magnetic Separation

2015 ◽  
Vol 50 (11) ◽  
pp. 1689-1694 ◽  
Author(s):  
Huifen Zhang ◽  
Luzheng Chen ◽  
Jianwu Zeng ◽  
Li Ding ◽  
Jian Liu
1992 ◽  
Vol 4 (1) ◽  
pp. 47-59 ◽  
Author(s):  
V. M. Maliy ◽  
I. P. Bogdanova

2020 ◽  
Vol 56 (1) ◽  
pp. 47-58
Author(s):  
A. Messai ◽  
A. Idres ◽  
J.M. Menendez-Aguado

The recent developments of steel and iron industries generated a huge consumption of iron ores which has attracted much attention for utilizing low-grade iron resources to satisfy this increasing demand. The present study focuses on the characterization and enrichment of the low-grade iron ores from Rouina deposit-Ain Defla-. Currently, the ore is used in the cement industry because it is considered a low-grade iron ore. After the sampling process, a physico-chemical and mineralogical characterization was carried out and the results revealed that the sample consists of hematite, limonite and goethite as major opaque oxide minerals whereas silicates as well as clays form the gangue minerals in the sample. The average grade of FeTotal, SiO2 and Al2O3 contents in the raw material collected from the mine of the case study are 30.85%, 23.12% and 7.77% respectively. Processes involving combination of classification, washing and dry high-intensity magnetic separation were carried out to upgrade the low-grade iron ore sample to make it suitable as a marketable product. The sample was first ground and each closed size sieve fractions were subjected to washing followed by drying than dry high intensity magnetic separation and it was observed that limited upgradation is possible. As a result, it was possible to obtain a magnetic concentrate of 54.09% with a recovery degree of 89.30% and yield of 62.82% using a magnetic field intensity equal to 2.4 Tesla at the size fraction [-0.125 +0.063 mm].


2013 ◽  
Vol 826 ◽  
pp. 34-37 ◽  
Author(s):  
Guo Zhen Liu ◽  
Shu Juan Dai ◽  
Li Mei Bai ◽  
Yu Xin Ma ◽  
Yong Zhang

The main elements can be recovered for mineral processing in a mineral containing titanium of Baoding area were Ti, Fe and V, and the elements in the main gangue minerals were Si and Al. Gravity concentration, gravity concentration-high intensity magnetic separation and gravity concentration-flotation tests were performed on the ore sample respectively. The results showed that, in the test of shaking table, when the grinding fineness was -0.074mm 93%, the productivity of concentrate can reach 32.24%; when grinding fineness was -0.074mm 93%, after gravity concentration-magnetic separation, 30.25% of concentrate productivity can be attained; when the grinding fineness was -0.074mm 85%, after gravity concentration-flotation, the productivity of concentrate was 3.31%. Maybe it's the condition of the tests wasn't controlled well, especially adjusting pH value in the flotation stage, it's hard to control, so the results were not very good.


2013 ◽  
Vol 641-642 ◽  
pp. 389-392
Author(s):  
Yi Miao Nie ◽  
Qi Hui Dai ◽  
Shu Xian Liu

Kyanite is a kind of andalusite minerals, with good refractory. In nature, it existed together with mica, quartz etc, so it is necessary to purify. Garnet kyanite schist in Hebei province as the raw ore was separated in this paper, on the basement of high intensity magnetic separation and gravity to demilish impurities, obtain kyanite rude concentrate, by proceed a series of flotation condition test research, through six- concentrate reelection, getting the flotation concentrate with grade of 56.16%,the productivity of 12.09%,the recovery of 36.82%. Meanwhile, the reason of the low concentrate grade was analysed, and the suggestion was given to deal with kyanite concentrate in the next step. It provided foundation date for the developing of kyanite separation.


Sign in / Sign up

Export Citation Format

Share Document