VARIANCE-BASED HARMONY SEARCH ALGORITHM FOR UNIMODAL AND MULTIMODAL OPTIMIZATION PROBLEMS WITH APPLICATION TO CLUSTERING

2014 ◽  
Vol 45 (6) ◽  
pp. 486-511 ◽  
Author(s):  
Vijay Kumar ◽  
Jitender Kumar Chhabra ◽  
Dinesh Kumar
Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1421 ◽  
Author(s):  
Shouheng Tuo ◽  
Zong Woo Geem ◽  
Jin Hee Yoon

A harmony search (HS) algorithm for solving high-dimensional multimodal optimization problems (named DIHS) was proposed in 2015 and showed good performance, in which a dynamic-dimensionality-reduction strategy is employed to maintain a high update success rate of harmony memory (HM). However, an extreme assumption was adopted in the DIHS that is not reasonable, and its analysis for the update success rate is not sufficiently accurate. In this study, we reanalyzed the update success rate of HS and now present a more valid method for analyzing the update success rate of HS. In the new analysis, take-k and take-all strategies that are employed to generate new solutions are compared to the update success rate, and the average convergence rate of algorithms is also analyzed. The experimental results demonstrate that the HS based on the take-k strategy is efficient and effective at solving some complex high-dimensional optimization problems.


2015 ◽  
Vol 46 ◽  
pp. 151-163 ◽  
Author(s):  
Shouheng Tuo ◽  
Junying Zhang ◽  
Longquan Yong ◽  
Xiguo Yuan ◽  
Baobao Liu ◽  
...  

2013 ◽  
Vol 464 ◽  
pp. 352-357
Author(s):  
Pasura Aungkulanon

The engineering optimization problems are large and complex. Effective methods for solving these problems using a finite sequence of instructions can be categorized into optimization and meta-heuristics algorithms. Meta-heuristics techniques have been proved to solve various real world problems. In this study, a comparison of two meta-heuristic techniques, namely, Global-Best Harmony Search algorithm (GHSA) and Bat algorithm (BATA), for solving constrained optimization problems was carried out. GHSA and BATA are optimization algorithms inspired by the structure of harmony improvisation search process and social behavior of bat echolocation for decision direction. These algorithms were implemented under different natures of three optimization, which are single-peak, multi-peak and curved-ridge response surfaces. Moreover, both algorithms were also applied to constrained engineering problems. The results from non-linear continuous unconstrained functions in the context of response surface methodology and constrained problems can be shown that Bat algorithm seems to be better in terms of the sample mean and variance of design points yields and computation time.


2014 ◽  
Vol 644-650 ◽  
pp. 2169-2172
Author(s):  
Zhi Kong ◽  
Guo Dong Zhang ◽  
Li Fu Wang

This paper develops an improved novel global harmony search (INGHS) algorithm for solving optimization problems. INGHS employs a novel method for generating new solution vectors that enhances accuracy and convergence rate of novel global harmony search (NGHS) algorithm. Simulations for five benchmark test functions show that INGHS possesses better ability to find the global optimum than that of harmony search (HS) algorithm. Compared with NGHS and HS, INGHS is better in terms of robustness and efficiency.


2014 ◽  
Vol 1065-1069 ◽  
pp. 3438-3441
Author(s):  
Guo Jun Li

Harmony search (HS) algorithm is a new population based algorithm, which imitates the phenomenon of musical improvisation process. Its own potential and shortage, one shortage is that it easily trapped into local optima. In this paper, a hybrid harmony search algorithm (HHS) is proposed based on the conception of swarm intelligence. HHS employed a local search method to replace the pitch adjusting operation, and designed an elitist preservation strategy to modify the selection operation. Experiment results demonstrated that the proposed method performs much better than the HS and its improved algorithms (IHS, GHS and NGHS).


Sign in / Sign up

Export Citation Format

Share Document