A D–solution of a multi–parameter continuous time optimal stopping problem with constraints

2019 ◽  
Vol 40 (4) ◽  
pp. 839-852
Author(s):  
Teruo Tanaka
2020 ◽  
Vol 57 (3) ◽  
pp. 981-1004
Author(s):  
David Hobson ◽  
Matthew Zeng

AbstractIn a classical, continuous-time, optimal stopping problem, the agent chooses the best time to stop a stochastic process in order to maximise the expected discounted return. The agent can choose when to stop, and if at any moment they decide to stop, stopping occurs immediately with probability one. However, in many settings this is an idealistic oversimplification. Following Strack and Viefers we consider a modification of the problem in which stopping occurs at a rate which depends on the relative values of stopping and continuing: there are several different solutions depending on how the value of continuing is calculated. Initially we consider the case where stopping opportunities are constrained to be event times of an independent Poisson process. Motivated by the limiting case as the rate of the Poisson process increases to infinity, we also propose a continuous-time formulation of the problem where stopping can occur at any instant.


1989 ◽  
Vol 26 (04) ◽  
pp. 695-706
Author(s):  
Gerold Alsmeyer ◽  
Albrecht Irle

Consider a population of distinct species Sj , j∈J, members of which are selected at different time points T 1 , T 2,· ··, one at each time. Assume linear costs per unit of time and that a reward is earned at each discovery epoch of a new species. We treat the problem of finding a selection rule which maximizes the expected payoff. As the times between successive selections are supposed to be continuous random variables, we are dealing with a continuous-time optimal stopping problem which is the natural generalization of the one Rasmussen and Starr (1979) have investigated; namely, the corresponding problem with fixed times between successive selections. However, in contrast to their discrete-time setting the derivation of an optimal strategy appears to be much harder in our model as generally we are no longer in the monotone case. This note gives a general point process formulation for this problem, leading in particular to an equivalent stopping problem via stochastic intensities which is easier to handle. Then we present a formal derivation of the optimal stopping time under the stronger assumption of i.i.d. (X 1 , A 1) (X2, A2 ), · ·· where Xn gives the label (j for Sj ) of the species selected at Tn and An denotes the time between the nth and (n – 1)th selection, i.e. An = Tn – Tn– 1. In the case where even Xn and An are independent and An has an IFR (increasing failure rate) distribution, an explicit solution for the optimal strategy is derived as a simple consequence.


2002 ◽  
Vol 34 (01) ◽  
pp. 141-157 ◽  
Author(s):  
Paul Dupuis ◽  
Hui Wang

We consider a class of optimal stopping problems where the ability to stop depends on an exogenous Poisson signal process - we can only stop at the Poisson jump times. Even though the time variable in these problems has a discrete aspect, a variational inequality can be obtained by considering an underlying continuous-time structure. Depending on whether stopping is allowed at t = 0, the value function exhibits different properties across the optimal exercise boundary. Indeed, the value function is only 𝒞 0 across the optimal boundary when stopping is allowed at t = 0 and 𝒞 2 otherwise, both contradicting the usual 𝒞 1 smoothness that is necessary and sufficient for the application of the principle of smooth fit. Also discussed is an equivalent stochastic control formulation for these stopping problems. Finally, we derive the asymptotic behaviour of the value functions and optimal exercise boundaries as the intensity of the Poisson process goes to infinity or, roughly speaking, as the problems converge to the classical continuous-time optimal stopping problems.


1997 ◽  
Vol 34 (1) ◽  
pp. 267-282 ◽  
Author(s):  
C. Costantini ◽  
F. Spizzichino

We consider the problem of the optimal duration of a burn-in experiment for n identical units with conditionally exponential life-times of unknown parameter Λ. The problem is formulated as an optimal stopping problem for a suitably defined two-dimensional continuous-time Markov process. By exploiting monotonicity properties of the statistical model and of the costs we prove that the optimal stopping region is monotone (according to an appropriate definition) and derive a set of equations that uniquely determine it and that can be easily solved recursively. The optimal stopping region varies monotonically with the costs. For the class of problems corresponding to a prior distribution on Λ of type gamma it is shown how the optimal stopping region varies with respect to the prior distribution and with respect to n.


1996 ◽  
Vol 10 (4) ◽  
pp. 543-555 ◽  
Author(s):  
Bruno Bassan ◽  
Monica Brezzi ◽  
Marco Scarsini

Several agents with different subjective probabilities make a binary decision at a time determined by a planner. Each agent chooses the action that has the highest probability of success. Given that their probabilities differ, so will their choices. From time 0 until decision time, all the agents are entitled to access the same increasing flow of information. The planner, who gains from having as many agents as possible making the right choice, faces the following tradeoff: the more information she feeds to the agents, the better off they will be in making their decisions, but the less likely they will be to diversify their actions, so the more difficult it will be for her to hedge her positions. The model gives rise to a continuous time optimal stopping problem.


2002 ◽  
Vol 34 (1) ◽  
pp. 141-157 ◽  
Author(s):  
Paul Dupuis ◽  
Hui Wang

We consider a class of optimal stopping problems where the ability to stop depends on an exogenous Poisson signal process - we can only stop at the Poisson jump times. Even though the time variable in these problems has a discrete aspect, a variational inequality can be obtained by considering an underlying continuous-time structure. Depending on whether stopping is allowed att= 0, the value function exhibits different properties across the optimal exercise boundary. Indeed, the value function is only𝒞0across the optimal boundary when stopping is allowed att= 0 and𝒞2otherwise, both contradicting the usual𝒞1smoothness that is necessary and sufficient for the application of the principle of smooth fit. Also discussed is an equivalent stochastic control formulation for these stopping problems. Finally, we derive the asymptotic behaviour of the value functions and optimal exercise boundaries as the intensity of the Poisson process goes to infinity or, roughly speaking, as the problems converge to the classical continuous-time optimal stopping problems.


1997 ◽  
Vol 34 (01) ◽  
pp. 267-282
Author(s):  
C. Costantini ◽  
F. Spizzichino

We consider the problem of the optimal duration of a burn-in experiment for n identical units with conditionally exponential life-times of unknown parameter Λ. The problem is formulated as an optimal stopping problem for a suitably defined two-dimensional continuous-time Markov process. By exploiting monotonicity properties of the statistical model and of the costs we prove that the optimal stopping region is monotone (according to an appropriate definition) and derive a set of equations that uniquely determine it and that can be easily solved recursively. The optimal stopping region varies monotonically with the costs. For the class of problems corresponding to a prior distribution on Λ of type gamma it is shown how the optimal stopping region varies with respect to the prior distribution and with respect to n.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Lu Ye

This paper considers the optimal stopping problem for continuous-time Markov processes. We describe the methodology and solve the optimal stopping problem for a broad class of reward functions. Moreover, we illustrate the outcomes by some typical Markov processes including diffusion and Lévy processes with jumps. For each of the processes, the explicit formula for value function and optimal stopping time is derived. Furthermore, we relate the derived optimal rules to some other optimal problems.


Sign in / Sign up

Export Citation Format

Share Document