event times
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 65)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Xuan Wang ◽  
Xing Chu ◽  
Yunhe Meng ◽  
Guoguang wen ◽  
Qian Jiang

Abstract In this paper, the distributed displacement-based formation and leaderless maneuver guidance control problems of multi-space-robot systems are investigated by introducing event-triggered control update mechanisms. A distributed formation and leaderless maneuver guidance control framework is first constructed, which includes two parallel controllers, namely, an improved linear quadratic regulator and a distributed consensus-based formation controller. By applying this control framework, the desired formation configuration of multi-space-robot systems can be achieved and the center of leaderless formation can converge to the target point globally. Second, a pull-based event triggering mechanism is introduced to the distributed formation controller, which makes the control update independent of the events of neighboring robots, avoids unnecessary control updates, and saves the extremely limited energy of space robots. Furthermore, the potential Zeno behaviors have been excluded by proving a positive lower bound for the inter-event times. Finally, numerical simulation verifies the effectiveness of the theoretical results.


2021 ◽  
Vol 24 (4) ◽  
pp. 370-381
Author(s):  
Camillo Cammarota

The random sequence of inter-event times of a level-crossing is a statistical tool that can be used to investigate time series from complex phenomena. Typical features of observed series as the skewed distribution and long range correlations are modeled using non linear transformations applied to Gaussian ARMA processes. We investigate the distribution of the inter-event times of the level-crossing events in ARMA processes in function of the probability corresponding to the level. For Gaussian ARMA processes we establish a representation of this indicator, prove its symmetry and that it is invariant with respect to the application of a non linear monotonic transformation. Using simulated series we provide evidence that the symmetry disappears if a non monotonic transformation is applied to an ARMA process. We estimate this indicator in wind speed time series obtained from three different databases. Data analysis provides evidence that the indicator is non symmetric, suggesting that only highly non linear transformations of ARMA processes can be used in modeling. We discuss the possible use of the inter-event times in the prediction task.


2021 ◽  
Author(s):  
Yuri Ahuja ◽  
Jun Wen ◽  
Chuan Hong ◽  
Zongqi Xia ◽  
Sicong Huang ◽  
...  

Abstract While there exist numerous methods to identify binary phenotypes (i.e. COPD) using electronic health record (EHR) data, few exist to ascertain the timings of phenotype events (i.e. COPD onset or exacerbations). Estimating event times could enable more powerful use of EHR data for longitudinal risk modeling, including survival analysis. Here we introduce Semi-supervised Adaptive Markov Gaussian Embedding Process (SAMGEP), a semi-supervised machine learning algorithm to estimate phenotype event times using EHR data with limited observed labels, which require resource-intensive chart review to obtain. SAMGEP models latent phenotype states as a binary Markov process, and it employs an adaptive weighting strategy to map timestamped EHR features to an embedding function that it models as a state-dependent Gaussian process. SAMGEP’s feature weighting achieves meaningful feature selection, and its predictions significantly improve AUCs and F1 scores over existing approaches in diverse simulations and real-world settings. It is particularly adept at predicting cumulative risk and event counting process functions, and is robust to diverse generative model parameters. Moreover, it achieves high accuracy with few (50-100) labels, efficiently leveraging unlabeled EHR data to maximize information gain from costly-to-obtain event time labels. SAMGEP can be used to estimate accurate phenotype state functions for risk modeling research.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Colin Griesbach ◽  
Andreas Groll ◽  
Elisabeth Bergherr

Joint models are a powerful class of statistical models which apply to any data where event times are recorded alongside a longitudinal outcome by connecting longitudinal and time-to-event data within a joint likelihood allowing for quantification of the association between the two outcomes without possible bias. In order to make joint models feasible for regularization and variable selection, a statistical boosting algorithm has been proposed, which fits joint models using component-wise gradient boosting techniques. However, these methods have well-known limitations, i.e., they provide no balanced updating procedure for random effects in longitudinal analysis and tend to return biased effect estimation for time-dependent covariates in survival analysis. In this manuscript, we adapt likelihood-based boosting techniques to the framework of joint models and propose a novel algorithm in order to improve inference where gradient boosting has said limitations. The algorithm represents a novel boosting approach allowing for time-dependent covariates in survival analysis and in addition offers variable selection for joint models, which is evaluated via simulations and real world application modelling CD4 cell counts of patients infected with human immunodeficiency virus (HIV). Overall, the method stands out with respect to variable selection properties and represents an accessible way to boosting for time-dependent covariates in survival analysis, which lays a foundation for all kinds of possible extensions.


Author(s):  
Randolph T. Williams

Abstract A Poisson process giving rise to earthquakes that occur randomly in time has become a de facto null hypothesis when assessing the periodicity of large (Mw>∼6–7) earthquakes in the paleoseismic record. This implies an exponential distribution of inter-event times (IETs) and therefore an abundance of IETs that are very short relative to the mean value. As such, the Poisson model posits that large ruptures occurring in rapid succession should be relatively common. Below some threshold IET defined by site specific conditions, however, these short IET earthquakes are unlikely to be recorded as distinct events in the paleoseismic record. This article presents the results of simple Monte Carlo simulations that quantify the potential effects of truncation of short IETs on the apparent periodicity of large earthquakes generated by a Poisson process. Results indicate that this truncation effect results in chronologies that appear systematically more periodic than the original sequence of events. The magnitude of this discrepancy depends primarily on the ratio of the minimum preserved and mean IETs in addition to the number of events in the chronology. As such, previous statistical analyses that have assessed for periodicity in the paleoseismic record of large earthquakes likely incorporated a bias in favor of apparent periodicity by employing Poisson behavior as a null hypothesis. This bias can be corrected if the minimum preserved IET can be determined or reasonably assumed for a particular paleoseismic record or site.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1411
Author(s):  
Shangzhe Li ◽  
Xin Jiang ◽  
Junran Wu ◽  
Lin Tong ◽  
Ke Xu

We investigated a comprehensive analysis of the mutual exciting mechanism for the dynamic of stock price trends. A multi-dimensional Hawkes-model-based approach was proposed to capture the mutual exciting activities, which take the form of point processes induced by dual moving average crossovers. We first performed statistical measurements for the crossover event sequence, introducing the distribution of the inter-event times of dual moving average crossovers and the correlations of local variation (LV), which is often used in spike train analysis. It was demonstrated that the crossover dynamics in most stock sectors are generally more regular than a standard Poisson process, and the correlation between variations is ubiquitous. In this sense, the proposed model allowed us to identify some asymmetric cross-excitations, and a mutually exciting structure of stock sectors could be characterized by mutual excitation correlations obtained from the kernel matrix of our model. Using simulations, we were able to substantiate that a burst of the dual moving average crossovers in one sector increases the intensity of burst both in the same sector (self-excitation) as well as in other sectors (cross-excitation), generating episodes of highly clustered burst across the market. Furthermore, based on our finding, an algorithmic pair trading strategy was developed and backtesting results on real market data showed that the mutual excitation mechanism might be profitable for stock trading.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michelangelo Naim ◽  
Mikhail Katkov ◽  
Misha Tsodyks

AbstractMemorizing time of an event may employ two processes (1) encoding of the absolute time of events within an episode, (2) encoding of its relative order. Here we study interaction between these two processes. We performed experiments in which one or several items were presented, after which participants were asked to report the time of occurrence of items. When a single item was presented, the distribution of reported times was quite wide. When two or three items were presented, the relative order among them strongly affected the reported time of each of them. Bayesian theory that takes into account the memory for the events order is compatible with the experimental data, in particular in terms of the effect of order on absolute time reports. Our results suggest that people do not deduce order from memorized time, instead people’s memory for absolute time of events relies critically on memorized order of the events.


Sign in / Sign up

Export Citation Format

Share Document