Late Weichselian pollen stratigraphy, clay varve chronology and palaeomagnetic secular variations in Lake Bolmen, Småland, south Sweden

Boreas ◽  
2001 ◽  
Vol 30 (3) ◽  
pp. 189-204 ◽  
Author(s):  
Jonas Ising
GFF ◽  
1996 ◽  
Vol 118 (sup004) ◽  
pp. 72-73
Author(s):  
B. Wohlfarth ◽  
S. Björck ◽  
B. Holmquist ◽  
G. Possnert ◽  
J. Björck ◽  
...  

Radiocarbon ◽  
1995 ◽  
Vol 37 (2) ◽  
pp. 347-359 ◽  
Author(s):  
Barbara Wohlfarth ◽  
Svante Björck ◽  
Göran Possnert

The Swedish Time Scale (STS) is a ca. 13,300-yr-long varve chronology that has been established for the Swedish east coast from >1000 overlapping clay-varve diagrams. We describe the present state of the STS and illustrate the application of this worldwide unique varve chronology for AMS radiocarbon measurements. The results are compared to other 14C-dated calendar-year chronologies: dendrochronology, laminated lake sediments and U/Th. Our data set agrees with the oldest part of the dendrochronological calibration curve, and with AMS 14C-dated lake lamination data and U/Th on corals down to ca. 12 ka calendar years bp. Further back in time, the AMS-dated part of the STS partly compares well with lake lamination chronologies and shows that the difference between 14C and calendar years decreases rapidly between 12,600 and 12,800 calendar years bp. Such a development seems to contrast with U/Th measurements on corals. We suggest that the cause for the divergence among three supposed calendar-year chronologies lies in the fact that the data points on the marine 14C-U/Th curve are more widely spaced in time than the tightly grouped set of terrestrial AMS 14C dates, and thus are not able to reflect short-term changes in atmospheric 14C. Therefore, we argue that the use of the pre-Holocene part of the calibration program is premature and inadvisable.


1966 ◽  
Vol 25 ◽  
pp. 323-325 ◽  
Author(s):  
B. Garfinkel

The paper extends the known solution of the Main Problem to include the effects of the higher spherical harmonics of the geopotential. The von Zeipel method is used to calculate the secular variations of orderJmand the long-periodic variations of ordersJm/J2andnJm,λ/ω. HereJmandJm,λare the coefficients of the zonal and the tesseral harmonics respectively, withJm,0=Jm, andωis the angular velocity of the Earth's rotation. With the aid of the theory of spherical harmonics the results are expressed in a most compact form.


1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


Sign in / Sign up

Export Citation Format

Share Document