Mathematical modelling of slag entrainment and entrained droplets in a continuous casting mould

2019 ◽  
Vol 46 (9) ◽  
pp. 886-895 ◽  
Author(s):  
Peng Zhao ◽  
Lanhua Zhou
2011 ◽  
Vol 291-294 ◽  
pp. 3060-3063
Author(s):  
Hong Ming Wang ◽  
Bo Feng Yang ◽  
Bang Min Song ◽  
Ting Wang Zhang ◽  
Yong Qi Yan

A model on non-sinusoidal oscillation of continuous casting mould was established to study the pressure in flux channel. The effects of oscillation parameters on the pressure in flux channel were researched. The non-sinusoidal oscillation parameters were optimized. When the casting speed is 1.8 m·min-1, the optimized oscillation parameters are: non-sinusoidal factor (α) is 0.198, oscillation amplitude (s) is ±4mm and oscillation frequency (f) is 165min-1. When the casting speed is 2.0 m·min-1, the optimized oscillation parameters are: α is 0.186, s is ±4.5mm and f is 155min-1. These optimized oscillation parameters are proved applicable in practice.


2015 ◽  
Vol 60 (1) ◽  
pp. 209-213
Author(s):  
M. Rywotycki ◽  
Z. Malinowski ◽  
K. Miłkowska-Piszczek ◽  
A. Gołdasz ◽  
B. Hadała

AbstractThe paper presents the results of research concerning the influence of radiative heat transfer on the strand and mould interface. The four models for determining the heat transfer boundary conditions within the primary cooling zone for the continuous casting process of steel have been presented. A cast slab - with dimensions of 1280×220 mm - has been analysed. Models describing the heat transfer by radiation have been specified and applied in the numerical calculations. The problem has been solved by applying the finite element method and the self-developed software. The simulation results, along with their analysis, have been presented. The developed models have been verified based on the data obtained from the measurements at the industrial facility.


Sign in / Sign up

Export Citation Format

Share Document