Integrated parameter and tolerance design based on a multivariate Gaussian process model

2020 ◽  
pp. 1-20
Author(s):  
Zebiao Feng ◽  
Jianjun Wang ◽  
Yan Ma ◽  
Yizhong Ma
2017 ◽  
Vol 58 ◽  
pp. 11-22 ◽  
Author(s):  
Xiaodan Hong ◽  
Biao Huang ◽  
Yongsheng Ding ◽  
Fan Guo ◽  
Lei Chen ◽  
...  

Author(s):  
Raed Kontar ◽  
Shiyu Zhou ◽  
John Horst

This paper explores the potential of Gaussian process based Metamodels for simulation optimization with multivariate outputs. Specifically we focus on Multivariate Gaussian process models established through separable and non-separable covariance structures. We discuss the advantages and drawbacks of each approach and their potential applicability in manufacturing systems. The advantageous features of the Multivariate Gaussian process models are then demonstrated in a case study for the optimization of manufacturing performance metrics.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jie Liang ◽  
Zhengyi Shi ◽  
Feifei Zhu ◽  
Wenxin Chen ◽  
Xin Chen ◽  
...  

There is uncertainty in the neuromusculoskeletal system, and deterministic models cannot describe this significant presence of uncertainty, affecting the accuracy of model predictions. In this paper, a knee joint angle prediction model based on surface electromyography (sEMG) signals is proposed. To address the instability of EMG signals and the uncertainty of the neuromusculoskeletal system, a non-parametric probabilistic model is developed using a Gaussian process model combined with the physiological properties of muscle activation. Since the neuromusculoskeletal system is a dynamic system, the Gaussian process model is further combined with a non-linear autoregressive with eXogenous inputs (NARX) model to create a Gaussian process autoregression model. In this paper, the normalized root mean square error (NRMSE) and the correlation coefficient (CC) are compared between the joint angle prediction results of the Gaussian process autoregressive model prediction and the actual joint angle under three test scenarios: speed-dependent, multi-speed and speed-independent. The mean of NRMSE and the mean of CC for all test scenarios in the healthy subjects dataset and the hemiplegic patients dataset outperform the results of the Gaussian process model, with significant differences (p < 0.05 and p < 0.05, p < 0.05 and p < 0.05). From the perspective of uncertainty, a non-parametric probabilistic model for joint angle prediction is established by using Gaussian process autoregressive model to achieve accurate prediction of human movement.


Sign in / Sign up

Export Citation Format

Share Document