A generalized function projective synchronization scheme for uncertain chaotic systems subject to input nonlinearities

2016 ◽  
Vol 45 (6) ◽  
pp. 689-710 ◽  
Author(s):  
Sarah Hamel ◽  
Abdesselem Boulkroune
2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Chunde Yang ◽  
Hao Cai ◽  
Ping Zhou

A modified function projective synchronization for fractional-order chaotic system, called compound generalized function projective synchronization (CGFPS), is proposed theoretically in this paper. There are one scaling-drive system, more than one base-drive system, and one response system in the scheme of CGFPS, and the scaling function matrices come from multidrive systems. The proposed CGFPS technique is based on the stability theory of fractional-order system. Moreover, we achieve the CGFPS between three-driver chaotic systems, that is, the fractional-order Arneodo chaotic system, the fractional-order Chen chaotic system, and the fractional-order Lu chaotic system, and one response chaotic system, that is, the fractional-order Lorenz chaotic system. Numerical experiments are demonstrated to verify the effectiveness of the CGFPS scheme.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Yuan Gao ◽  
Chenghua Liang

A new four-dimensional hyperchaotic system is investigated. Numerical and analytical studies are carried out on its basic dynamical properties, such as equilibrium point, Lyapunov exponents, Poincaré maps, and chaotic dynamical behaviors. We verify the realizability of the new system via an electronic circuit by using Multisim software. Furthermore, a generalized function projective synchronization scheme of two different hyperchaotic systems with uncertain parameters is proposed, which includes some existing projective synchronization schemes, such as generalized projection synchronization and function projective synchronization. Based on the Lyapunov stability theory, a controller with parameters update laws is designed to realize synchronization. Using this controller, we realize the synchronization between Chen hyperchaotic system and the new system to verify the validity and feasibility of our method.


Sign in / Sign up

Export Citation Format

Share Document