Certainty Equivalent of a Chance Constraint if the Random Variable is Uniformly Distributed

1974 ◽  
Vol 3 (10) ◽  
pp. 949-951
Author(s):  
B. P. Lingaraj
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Anuradha Sahoo ◽  
J. K. Dash

A method is proposed for solving single-period inventory fuzzy probabilistic model (SPIFPM) with fuzzy demand and fuzzy storage space under a chance constraint. Our objective is to maximize the total profit for both overstock and understock situations, where the demandD~jfor each productjin the objective function is considered as a fuzzy random variable (FRV) and with the available storage space areaW~, which is also a FRV under normal distribution and exponential distribution. Initially we used the weighted sum method to consider both overstock and understock situations. Then the fuzziness of the model is removed by ranking function method and the randomness of the model is removed by chance constrained programming problem, which is a deterministic nonlinear programming problem (NLPP) model. Finally this NLPP is solved by using LINGO software. To validate and to demonstrate the results of the proposed model, numerical examples are given.


Author(s):  
P. C. Jha ◽  
Vikram Bali

The application of computer systems has now crossed many different fields. Systems are becoming more software intensive. The requirements of the customer for a more reliable software led to the fact that software reliability is now an important research area. One method to improve software reliability is by the application of redundancy. A careful use of redundancy may allow the system to tolerate faults generated during software design and coding thus improving software reliability. The fault tolerant software systems are usually developed by integrating COTS (commercial off-the-shelf) software components. This paper is designed to select optimal components for a fault tolerant modular software system so as to maximize the overall reliability of the system with simultaneously minimizing the overall cost. A chance constrained goal programming model has been designed after considering the parameters corresponding to reliability and cost of the components as random variable. The random variable in this case has been considered as value which has known mean and standard deviation. A chance constraint goal programming technique is used to solve the model. The issue of compatibility among different commercial off-the shelf alternatives is also considered in the paper. Numerical illustrations are provided to demonstrate the model.


2021 ◽  
pp. 1-26
Author(s):  
Thijs van de Laar ◽  
Henk Wymeersch ◽  
İsmail Şenöz ◽  
Ayça Özçelikkale

Active inference (ActInf) is an emerging theory that explains perception and action in biological agents in terms of minimizing a free energy bound on Bayesian surprise. Goal-directed behavior is elicited by introducing prior beliefs on the underlying generative model. In contrast to prior beliefs, which constrain all realizations of a random variable, we propose an alternative approach through chance constraints, which allow for a (typically small) probability of constraint violation, and demonstrate how such constraints can be used as intrinsic drivers for goal-directed behavior in ActInf. We illustrate how chance-constrained ActInf weights all imposed (prior) constraints on the generative model, allowing, for example, for a trade-off between robust control and empirical chance constraint violation. Second, we interpret the proposed solution within a message passing framework. Interestingly, the message passing interpretation is not only relevant to the context of ActInf, but also provides a general-purpose approach that can account for chance constraints on graphical models. The chance constraint message updates can then be readily combined with other prederived message update rules without the need for custom derivations. The proposed chance-constrained message passing framework thus accelerates the search for workable models in general and can be used to complement message-passing formulations on generative neural models.


2021 ◽  
Vol 14 (4) ◽  
pp. 158
Author(s):  
Kazem Falahati

Expected utility theory (EUT) is currently the standard framework which formally defines rational decision-making under risky conditions. EUT uses a theoretical device called von Neumann–Morgenstern utility function, where concepts of function and random variable are employed in their pre-set-theoretic senses. Any von Neumann–Morgenstern utility function thus derived is claimed to transform a non-degenerate random variable into its certainty equivalent. However, there can be no certainty equivalent for a non-degenerate random variable by the set-theoretic definition of a random variable, whilst the continuity axiom of EUT implies the existence of such a certainty equivalent. This paper also demonstrates that rational behaviour under utility theory is incompatible with scarcity of resources, making behaviour consistent with EUT irrational and justifying persistent external inconsistencies of EUT. A brief description of a new paradigm which can resolve the problems of the standard paradigm is presented. These include resolutions of such anomalies as endowment effect, asymmetric valuation of gains and losses, intransitivity of preferences as well as the St. Petersburg Paradox.


1998 ◽  
Vol 37 (03) ◽  
pp. 235-238 ◽  
Author(s):  
M. El-Taha ◽  
D. E. Clark

AbstractA Logistic-Normal random variable (Y) is obtained from a Normal random variable (X) by the relation Y = (ex)/(1 + ex). In Monte-Carlo analysis of decision trees, Logistic-Normal random variates may be used to model the branching probabilities. In some cases, the probabilities to be modeled may not be independent, and a method for generating correlated Logistic-Normal random variates would be useful. A technique for generating correlated Normal random variates has been previously described. Using Taylor Series approximations and the algebraic definitions of variance and covariance, we describe methods for estimating the means, variances, and covariances of Normal random variates which, after translation using the above formula, will result in Logistic-Normal random variates having approximately the desired means, variances, and covariances. Multiple simulations of the method using the Mathematica computer algebra system show satisfactory agreement with the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document