scholarly journals High-Dimensional Elliptical Sliced Inverse Regression in non-Gaussian Distributions

Author(s):  
Xin Chen ◽  
Jia Zhang ◽  
Wang Zhou
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jae Keun Yoo

Abstract Sufficient dimension reduction (SDR) for a regression pursue a replacement of the original p-dimensional predictors with its lower-dimensional linear projection. The so-called sliced inverse regression (SIR; [5]) arguably has the longest history in SDR methodologies, but it is still one of the most popular one. The SIR is known to be easily affected by the number of slices, which is one of its critical deficits. Recently, a fused approach for SIR is proposed to relieve this weakness, which fuses the kernel matrices computed by the SIR application from various numbers of slices. In the paper, the fused SIR is applied to a large-p-small n regression of a high-dimensional microarray right-censored data to show its practical advantage over usual SIR application. Through model validation, it is confirmed that the fused SIR outperforms the SIR with any number of slices under consideration.


Biometrika ◽  
2018 ◽  
Author(s):  
Kean Ming Tan ◽  
Zhaoran Wang ◽  
Tong Zhang ◽  
Han Liu ◽  
R Dennis Cook

Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 743
Author(s):  
Xi Liu ◽  
Shuhang Chen ◽  
Xiang Shen ◽  
Xiang Zhang ◽  
Yiwen Wang

Neural signal decoding is a critical technology in brain machine interface (BMI) to interpret movement intention from multi-neural activity collected from paralyzed patients. As a commonly-used decoding algorithm, the Kalman filter is often applied to derive the movement states from high-dimensional neural firing observation. However, its performance is limited and less effective for noisy nonlinear neural systems with high-dimensional measurements. In this paper, we propose a nonlinear maximum correntropy information filter, aiming at better state estimation in the filtering process for a noisy high-dimensional measurement system. We reconstruct the measurement model between the high-dimensional measurements and low-dimensional states using the neural network, and derive the state estimation using the correntropy criterion to cope with the non-Gaussian noise and eliminate large initial uncertainty. Moreover, analyses of convergence and robustness are given. The effectiveness of the proposed algorithm is evaluated by applying it on multiple segments of neural spiking data from two rats to interpret the movement states when the subjects perform a two-lever discrimination task. Our results demonstrate better and more robust state estimation performance when compared with other filters.


2019 ◽  
Vol 4 (6) ◽  
Author(s):  
W. Sosa-Correa ◽  
R. M. Pereira ◽  
A. M. S. Macêdo ◽  
E. P. Raposo ◽  
D. S. P. Salazar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document