Computational designing of a novel subunit vaccine for human cytomegalovirus by employing the immunoinformatics framework

Author(s):  
Abu Tayab Moin ◽  
Gagandeep Singh ◽  
Nafisa Ahmed ◽  
Syeda Afra Saiara ◽  
Vladimir I. Timofeev ◽  
...  
Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 194
Author(s):  
Giuseppe Gerna ◽  
Daniele Lilleri

Congenital cytomegalovirus (cCMV) might occur as a result of the human cytomegalovirus (HCMV) primary (PI) or nonprimary infection (NPI) in pregnant women. Immune correlates of protection against cCMV have been partly identified only for PI. Following either PI or NPI, HCMV strains undergo latency. From a diagnostic standpoint, while the serological criteria for the diagnosis of PI are well-established, those for the diagnosis of NPI are still incomplete. Thus far, a recombinant gB subunit vaccine has provided the best results in terms of partial protection. This partial efficacy was hypothetically attributed to the post-fusion instead of the pre-fusion conformation of the gB present in the vaccine. Future efforts should be addressed to verify whether a new recombinant gB pre-fusion vaccine would provide better results in terms of prevention of both PI and NPI. It is still a matter of debate whether human hyperimmune globulin are able to protect from HCMV vertical transmission. In conclusion, the development of an HCMV vaccine that would prevent a significant portion of PI would be a major step forward in the development of a vaccine for both PI and NPI.


Author(s):  
E. S. Tackaberry ◽  
K. E. Wright ◽  
A. K. Dudani ◽  
I. Altosaar ◽  
P. R. Ganz

2020 ◽  
Vol 82 ◽  
pp. 104282
Author(s):  
Rajan Kumar Pandey ◽  
Rupal Ojha ◽  
Kumari Dipti ◽  
Rajiv Kumar ◽  
Vijay Kumar Prajapati

2018 ◽  
Author(s):  
Cody S. Nelson ◽  
Tori Huffman ◽  
Eduardo Cisneros de la Rosa ◽  
Guanhua Xie ◽  
Nathan Vandergrift ◽  
...  

AbstractHuman cytomegalovirus (HCMV) is the most common congenital infection worldwide, frequently causing hearing loss and brain damage in afflicted infants. A vaccine to prevent maternal acquisition of HCMV during pregnancy is necessary to reduce the incidence of infant disease. The glycoprotein B (gB) + MF59 adjuvant subunit vaccine platform is the most successful HCMV vaccine tested to-date, demonstrating approximately 50% efficacy in preventing HCMV acquisition in phase II trials. However, the mechanism of vaccine protection remains unknown. Plasma from 33 gB/MF59 vaccinees at peak immunogenicity was tested for gB epitope specificity as well as neutralizing and non-neutralizing anti-HCMV effector functions, and compared to an HCMV-seropositive cohort. gB/MF59 vaccination elicited IgG responses with gB-binding magnitude and avidity comparable to natural infection. Additionally, IgG subclass distribution was similar with predominant IgG1 and IgG3 responses induced by gB vaccination and HCMV infection. However, vaccine-elicited antibodies exhibited limited neutralization of the autologous virus, negligible neutralization of multiple heterologous strains, and limited binding responses against gB structural motifs targeted by neutralizing antibodies including AD-1, AD-2, and Domain I. Interestingly, vaccinees had high-magnitude IgG responses against AD-3 linear epitopes, demonstrating immunodominance against this non-neutralizing, cytosolic region. Finally, vaccine-elicited IgG robustly bound trimeric, membrane-associated gB on the surface of transfected or HCMV-infected cells and mediated virion phagocytosis, though were poor mediators of NK cell activation. Altogether, these data suggest that non-neutralizing antibody functions, including virion phagocytosis, likely played a role in the observed 50% vaccine-mediated protection against HCMV acquisition.SignificanceThe CDC estimates that every hour, a child is born in the United States with permanent neurologic disability resulting from human cytomegalovirus (HCMV) infection – more than is caused by Down syndrome, fetal alcohol syndrome, and neural tube defects combined. A maternal vaccine to block transmission of HCMV to the developing fetus is a necessary intervention to prevent these adverse outcomes. The gB/MF59 vaccine is the most successful tested clinically to-date, achieving 50% reduction in HCMV acquisition. This manuscript establishes the function and epitope specificity of the humoral response stimulated by this vaccine that may explain the partial vaccine efficacy. Understanding the mechanism of gB/MF59-elicited protective immune responses will guide rational design and evaluation of the next generation of HCMV vaccines.


2014 ◽  
Vol 111 (50) ◽  
pp. 17965-17970 ◽  
Author(s):  
Anna Kabanova ◽  
Laurent Perez ◽  
Daniele Lilleri ◽  
Jessica Marcandalli ◽  
Gloria Agatic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document