envelope glycoprotein
Recently Published Documents


TOTAL DOCUMENTS

1805
(FIVE YEARS 138)

H-INDEX

121
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Hanyu Pan ◽  
Jing Wang ◽  
Huitong Liang ◽  
Zhengtao Jiang ◽  
Lin Zhao ◽  
...  

HIV-specific chimeric antigen receptor (CAR) T cells have been developed to target latently infected CD4+ T cells that express virus either spontaneously or after intentional latency reversal. However, the T-cell exhaustion and the patient-specific autologous paradigm of CAR-T hurdled the clinical application. Here, we created HIV-specific CAR-T cells using human peripheral blood mononuclear cells and a 3BNC117-E27 CAR (3BE CAR) construct that enables the expression of PD-1 blocking scFv E27 and the single-chain variable fragment of the HIV-1-specific broadly neutralizing antibody 3BNC117 to target native HIV envelope glycoprotein (Env). In comparison with T cells expressing 3BNC117-CAR alone, 3BE CAR-T cells showed greater anti-HIV potency with stronger proliferation capability, higher killing efficiency (up to ~75%) and enhanced cytokine secretion in the presence of HIV envelope glycoprotein-expressing cells. Furthermore, our approach achieved high levels (over 97%) of the TCR-deficient 3BE CAR-T cells with the functional inactivation of endogenous TCR to avoid graft-versus-host disease without compromising their antiviral activity relative to standard anti-HIV CAR-T cells. These data suggest that we have provided a feasible approach to large-scale generation of "off-the-shelf" anti-HIV CAR-T cells in combination with antibody therapy of PD-1 blockade, which can be a powerful therapeutic candidate for the functional cure of HIV.


Author(s):  
Yanzhao Zhang ◽  
Seiya Ozono ◽  
Takuya Tada ◽  
Minoru Tobiume ◽  
Masanori Kameoka ◽  
...  

A member of the MARCH E3 ubiquitin ligase family, MARCH8, downregulates many different kinds of host transmembrane proteins, resulting in the regulation of cellular homeostasis. On the other hands, MARCH8 acts as an antiviral factor when it binds to and downregulates HIV-1 envelope glycoprotein and vesicular stomatitis virus G-glycoprotein that are viral transmembrane proteins.


2021 ◽  
Author(s):  
Johnny Malicoat ◽  
Senthamizharasi Manivasagam ◽  
Sonia Zuñiga ◽  
Isabel Sola ◽  
Dianne McCabe ◽  
...  

Research activities with infectious severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) are currently permitted only under biosafety level 3 (BSL3) containment. Here, we report the development of a single-cycle infectious SARS-CoV-2 virus replicon particle (VRP) system with a luciferase and green fluorescent protein (GFP) dual reporter that can be safely handled in BSL2 laboratories to study SARS-CoV-2 biology. The Spike (S) gene of SARS-CoV-2 encodes for the envelope glycoprotein, which is essential for mediating infection of new host cells. Through deletion and replacement of this essential S gene with a luciferase and GFP dual reporter, we have generated a conditional SARS-CoV-2 mutant (ΔS-VRP) that produces infectious particles only in cells expressing a viral envelope glycoprotein of choice. Interestingly, we observed more efficient production of infectious particles in cells expressing vesicular stomatitis virus (VSV) glycoprotein G (ΔS-VRP(G)) as compared to cells expressing other viral glycoproteins including S. We confirmed that infection from ΔS-VRP(G) is limited to a single round and can be neutralized by anti-VSV serum. In our studies with ΔS-VRP(G), we observed robust expression of both luciferase and GFP reporters in various human and murine cell types, demonstrating that a broad variety of cells can support intracellular replication of SARS-CoV-2. In addition, treatment of ΔS-VRP(G) infected cells with anti-CoV drugs remdesivir (nucleoside analog) or GC376 (CoV 3CL protease inhibitor) resulted in a robust decrease in both luciferase and GFP expression in a drug-dose and cell-type dependent manner. Taken together, we have developed a single-cycle infectious SARS-CoV-2 VRP system that serves as a versatile platform to study SARS-CoV-2 intracellular biology and to perform high throughput screening of antiviral drugs under BSL2 containment. Importance Due to the highly contagious nature of SARS-CoV-2 and the lack of immunity in the human population, research on SARS-CoV-2 has been restricted to biosafety level 3 laboratories. This has greatly limited participation of the broader scientific community in SARS-CoV-2 research and thus has hindered the development of vaccines and antiviral drugs. By deleting the essential Spike gene in the viral genome, we have developed a conditional mutant of SARS-CoV-2 with luciferase and fluorescent reporters, which can be safely used under biosafety level 2 conditions. Our single-cycle infectious SARS-CoV-2 virus replicon system can serve as a versatile platform to study SARS-CoV-2 intracellular biology and to perform high throughput screening of antiviral drugs under BSL2 containment.


2021 ◽  
Vol 11 (4) ◽  
pp. 3934-3943

SARS-CoV-2, the recent disease outbreak causing respiratory tract illness, raised as the global health burden that has caused significant morbidity and mortality worldwide. In the ongoing transmission of this pandemic virus, its control is very challenging due to the lack of specific treatment. The compelling situation feels the necessity for the use of all assets to cure this disease. SARS-CoV-2, main protease, and spike envelope glycoprotein are important determinants in the infectious virus process, and targeting these proteins is gaining importance in anti-CoV drug design. In these conceptual circumstances, an attempt has been made to suggest an in silico molecular docking approach to identify new probable leads from the active constituents from Nigella sativa L against protein target main protease(6LU7) and spike envelope glycoprotein(6MOJ). Our results indicate that Nigellicine and Nigellicimine N-Oxide towards main protease and Nigellamine A5 and Nigellamine A1 towards spike glycoprotein has potential antiviral protein binding affinity among others forming good interactions. Thus, these compounds may be considered to be potential inhibitors against SARS-CoV-2 but need to be explored for further evaluations are recommended.


2021 ◽  
Author(s):  
Hanh T. Nguyen ◽  
Alessandra Qualizza ◽  
Saumya Anang ◽  
Meiqing Zhao ◽  
Shitao Zou ◽  
...  

ABSTRACTBinding to the receptor, CD4, drives the pretriggered, “closed” (State-1) conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer into more “open” conformations (States 2 and 3). Broadly neutralizing antibodies, which are elicited inefficiently, mostly recognize the State-1 Env conformation, whereas the more commonly elicited poorly neutralizing antibodies recognize States 2/3. HIV-1 Env metastability has created challenges for defining the State-1 structure and developing immunogens mimicking this labile conformation. The availability of functional State-1 Envs that can be efficiently crosslinked at lysine and/or acidic amino acid residues might assist these endeavors. To that end, we modified HIV-1AD8 Env, which exhibits an intermediate level of triggerability by CD4. We introduced lysine/acidic residues at positions that exhibit such polymorphisms in natural HIV-1 strains. Env changes that were tolerated with respect to gp120-gp41 processing, subunit association and virus entry were further combined. Two common polymorphisms, Q114E and Q567K, as well as a known variant, A582T, additively rendered pseudoviruses resistant to cold, soluble CD4 and a CD4-mimetic compound, phenotypes indicative of stabilization of the pretriggered State-1 Env conformation. Combining these changes resulted in two lysine-rich HIV-1AD8 Env variants (E.2 and AE.2) with neutralization- and cold-resistant phenotypes comparable to those of natural, less triggerable Tier 2/3 HIV-1 isolates. Compared with these and the parental Envs, the E.2 and AE.2 Envs were cleaved more efficiently and exhibited stronger gp120-trimer association in detergent lysates. These highly crosslinkable Envs enriched in a pretriggered conformation should assist characterization of the structure and immunogenicity of this labile state.IMPORTANCEThe development of an efficient vaccine is critical for combating HIV-1 infection worldwide. However, the instability of the pretriggered shape (State 1) of the viral envelope glycoprotein (Env) makes it difficult to raise neutralizing antibodies against HIV-1. Here, by introducing multiple changes in Env, we derived two HIV-1 Env variants that are enriched in State 1 and can be efficiently crosslinked to maintain this shape. These Env complexes are more stable in detergent, assisting their purification. Thus, our study provides a path to a better characterization of the native pretriggered Env, which should assist vaccine development.


2021 ◽  
Author(s):  
Alba Torrents de la Peña ◽  
Iván del Moral Sánchez ◽  
Judith A. Burger ◽  
Ilja Bontjer ◽  
Gözde Isik ◽  
...  

The HIV-1 envelope glycoprotein (Env) trimer is responsible for viral entry into target cells and is the sole target of neutralizing antibodies. The Env protein is therefore the focus of HIV-1 vaccine design. Env consists of two non-covalently linked subunits (gp120 and gp41) that form a trimer of heterodimers and this 6-subunit complex is metastable and conformationally flexible. Several approaches have been pursued to stabilize the Env trimer for vaccine purposes, which include structure-based design, high-throughput screening and selection by mammalian cell display. Here, we employed directed virus evolution to improve Env trimer stability. Accordingly, we deliberately destabilized the Env gp120-gp41 interface by mutagenesis in the context of replicating HIV-1 LAI virus and virus evolution over time. We identified compensatory changes that pointed at convergent evolution as they were largely restricted to specific Env regions, namely the V1V2-domain of gp120, and the the HR1 and HR2 domain of gp41. Specifically, S614G in V1V2 and Q567R in HR1 were frequently identified. Interestingly, the majority of the compensatory mutations were at distant locations from the original mutations and most likely strengthen inter-subunit interactions. These results show how the virus can overcome Env instability and illuminate the regions that play a dominant role in Env stability. Importance A successful HIV-1 vaccine most likely requires an envelope glycoprotein (Env) component, as the Env is the only viral protein on the surface of the virus and the target for neutralizing antibodies. However, HIV Env is metastable and flexible because of the weak interactions between the Env subunits, complicating the generation of recombinant mimics of native Env. Here, we used directed viral evolution to study Env stability. We deliberately destabilized the interface between Env subunits and explored the capacity of the virus to repair trimer instability by evolution. We identified compensatory mutations that converged in specific Env locations: the apex and the trimer interface. Selected mutations enhanced the stability of recombinant soluble Env trimer proteins. These results provided clues on understanding the structural mechanisms involved in Env trimer stability, which can guide future immunogen design.


2021 ◽  
Author(s):  
Shijian Zhang ◽  
Kunyu Wang ◽  
Wei Li Wang ◽  
Hanh T. Nguyen ◽  
Shuobing Chen ◽  
...  

The functional human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer [(gp120/gp41) 3 ] is produced by cleavage of a conformationally flexible gp160 precursor. Gp160 cleavage or the binding of BMS-806, an entry inhibitor, stabilizes the pre-triggered, “closed” (State-1) conformation recognized by rarely elicited broadly neutralizing antibodies. Poorly neutralizing antibodies (pNAbs) elicited at high titers during natural infection recognize more “open” Env conformations (States 2 and 3) induced by binding the receptor, CD4. We found that BMS-806 treatment and crosslinking decreased the exposure of pNAb epitopes on cell-surface gp160; however, after detergent solubilization, crosslinked and BMS-806-treated gp160 sampled non-State-1 conformations that could be recognized by pNAbs. Cryo-electron microscopy of the purified BMS-806-bound gp160 revealed two hitherto unknown asymmetric trimer conformations, providing insights into the allosteric coupling between trimer opening and structural variation in the gp41 HR1 N region. The individual protomer structures in the asymmetric gp160 trimers resemble those of other genetically modified or antibody-bound cleaved HIV-1 Env trimers, which have been suggested to assume State-2-like conformations. Asymmetry of the uncleaved Env potentially exposes surfaces of the trimer to pNAbs. To evaluate the effect of stabilizing a State-1-like conformation of the membrane Env precursor, we treated cells expressing wild-type HIV-1 Env with BMS-806. BMS-806 treatment decreased both gp160 cleavage and the addition of complex glycans, implying that gp160 conformational flexibility contributes to the efficiency of these processes. Selective pressure to maintain flexibility in the precursor of functional Env allows the uncleaved Env to sample asymmetric conformations that potentially skew host antibody responses toward pNAbs. IMPORTANCE The envelope glycoprotein (Env) trimers on the surface of human immunodeficiency virus (HIV-1) mediate the entry of the virus into host cells and serve as targets for neutralizing antibodies. The functional Env trimer is produced by cleavage of the gp160 precursor in the infected cell. We found that the HIV-1 Env precursor is highly plastic, allowing it to assume different asymmetric shapes. This conformational plasticity is potentially important for Env cleavage and proper modification by sugars. Having a flexible, asymmetric Env precursor that can misdirect host antibody responses without compromising virus infectivity would be an advantage to a persistent virus like HIV-1.


2021 ◽  
Vol 6 (3) ◽  
pp. 155
Author(s):  
Emma M. Bentley ◽  
Samuel Richardson ◽  
Mariliza Derveni ◽  
Pramila Rijal ◽  
Alain R. Townsend ◽  
...  

Ebolaviruses continue to pose a significant outbreak threat, and while Ebola virus (EBOV)-specific vaccines and antivirals have been licensed, efforts to develop candidates offering broad species cross-protection are continuing. The use of pseudotyped virus in place of live virus is recognised as an alternative, safer, high-throughput platform to evaluate anti-ebolavirus antibodies towards their development, yet it requires optimisation. Here, we have shown that the target cell line impacts neutralisation assay results and cannot be selected purely based on permissiveness. In expanding the platform to incorporate each of the ebolavirus species envelope glycoprotein, allowing a comprehensive assessment of cross-neutralisation, we found that the recently discovered Bombali virus has a point mutation in the receptor-binding domain which prevents entry into a hamster cell line and, importantly, shows that this virus can be cross-neutralised by EBOV antibodies and convalescent plasma.


2021 ◽  
Author(s):  
Gregory Martin ◽  
Rebecca A Russell ◽  
Philipp Mundsperger ◽  
Scarlett L Harris ◽  
Lu Li Jovanoska ◽  
...  

Chemical cross-linking is used to stabilise protein structure with additional benefits of pathogen and toxin inactivation for vaccine use, but its use is restricted by potential induction of local or global structural distortion. This is of particular importance when the protein in question requires a high degree of structural conservation for the purposes of understanding function, or for inducing a biological outcome such as elicitation of antibodies to conformationally-sensitive epitopes. The HIV-1 envelope glycoprotein (Env) trimer is metastable and shifts between different conformational states, complicating its functional analysis and use as a vaccine antigen. Here we have used the hetero-bifunctional zero-length reagent EDC to cross-link two soluble Env trimers, selected well-folded trimers using an antibody affinity column, and transferred this process to good manufacturing practice (GMP) for clinical trial use. Cross-linking enhanced GMP trimer stability to biophysical and enzyme attack, and had broadly beneficial effects on morphology, antigenicity and immunogenicity. Cryo-EM analysis revealed that cross-linking essentially completely retained overall structure with RMSDs between unmodified and cross-linked Env trimers of 0.4 - 0.5 Å. Despite this negligible distortion of global trimer structure we identified individual inter-subunit, intra-subunit and intra-protomer cross-links. Thus, EDC cross-linking maintains protein folding, improves stability, and is readily transferred to GMP, consistent with use of this approach in probing protein structure/function relationships and in the design of vaccines.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1387
Author(s):  
Yukiko Otsuka ◽  
Hitomi Tsuge ◽  
Shiori Uezono ◽  
Soshi Tanabe ◽  
Maki Fujiwara ◽  
...  

For achieving retrograde gene transfer, we have so far developed two types of lentiviral vectors pseudotyped with fusion envelope glycoprotein, termed HiRet vector and NeuRet vector, consisting of distinct combinations of rabies virus and vesicular stomatitis virus glycoproteins. In the present study, we compared the patterns of retrograde transgene expression for the HiRet vs. NeuRet vectors by testing the cortical input system. These vectors were injected into the motor cortex in rats, marmosets, and macaques, and the distributions of retrograde labels were investigated in the cortex and thalamus. Our histological analysis revealed that the NeuRet vector generally exhibits a higher efficiency of retrograde gene transfer than the HiRet vector, though its capacity of retrograde transgene expression in the macaque brain is unexpectedly low, especially in terms of the intracortical connections, as compared to the rat and marmoset brains. It was also demonstrated that the NeuRet but not the HiRet vector displays sufficiently high neuron specificity and causes no marked inflammatory/immune responses at the vector injection sites in the primate (marmoset and macaque) brains. The present results indicate that the retrograde transgene efficiency of the NeuRet vector varies depending not only on the species but also on the input projections.


Sign in / Sign up

Export Citation Format

Share Document