vaccine development
Recently Published Documents


TOTAL DOCUMENTS

5898
(FIVE YEARS 2774)

H-INDEX

116
(FIVE YEARS 33)

2022 ◽  
Vol 54 (8) ◽  
pp. 1-32
Author(s):  
Jianguo Chen ◽  
Kenli Li ◽  
Zhaolei Zhang ◽  
Keqin Li ◽  
Philip S. Yu

The COVID-19 pandemic caused by the SARS-CoV-2 virus has spread rapidly worldwide, leading to a global outbreak. Most governments, enterprises, and scientific research institutions are participating in the COVID-19 struggle to curb the spread of the pandemic. As a powerful tool against COVID-19, artificial intelligence (AI) technologies are widely used in combating this pandemic. In this survey, we investigate the main scope and contributions of AI in combating COVID-19 from the aspects of disease detection and diagnosis, virology and pathogenesis, drug and vaccine development, and epidemic and transmission prediction. In addition, we summarize the available data and resources that can be used for AI-based COVID-19 research. Finally, the main challenges and potential directions of AI in fighting against COVID-19 are discussed. Currently, AI mainly focuses on medical image inspection, genomics, drug development, and transmission prediction, and thus AI still has great potential in this field. This survey presents medical and AI researchers with a comprehensive view of the existing and potential applications of AI technology in combating COVID-19 with the goal of inspiring researchers to continue to maximize the advantages of AI and big data to fight COVID-19.


Author(s):  
Ahan Gadkari ◽  
◽  
Sofia Dash ◽  

The availability of vaccinations against COVID-19 provides hope for containing the epidemic, which has already claimed over 2.84 million lives. However, inoculating millions of individuals worldwide would need large vaccine manufacturing followed by fair distribution. A barrier to vaccine development and dissemination is the developers' intellectual property rights. India and South Africa have jointly sought to the World Trade Organization that certain TRIPS rules of COVID-19 vaccines, medicines, and treatments be waived. This piece argues for such a waiver, highlighting the unique circumstances that exist. It believes that TRIPS's flexibilities are inadequate to cope with the present epidemic, particularly for nations without pharmaceutical manufacturing competence.


2022 ◽  
Vol 23 (2) ◽  
pp. 948
Author(s):  
Urszula Wójcik-Bojek ◽  
Barbara Różalska ◽  
Beata Sadowska

The main purpose of this review is to present justification for the urgent need to implement specific prophylaxis of invasive Staphylococcus aureus infections. We emphasize the difficulties in achieving this goal due to numerous S. aureus virulence factors important for the process of infection and the remarkable ability of these bacteria to avoid host defense mechanisms. We precede these considerations with a brief overview of the global necessitiy to intensify the use of vaccines against other pathogens as well, particularly in light of an impasse in antibiotic therapy. Finally, we point out global trends in research into modern technologies used in the field of molecular microbiology to develop new vaccines. We focus on the vaccines designed to fight the infections caused by S. aureus, which are often resistant to the majority of available therapeutic options.


2022 ◽  
Vol 12 ◽  
Author(s):  
Renata Fioravanti Tarabini ◽  
Mauricio Menegatti Rigo ◽  
André Faustino Fonseca ◽  
Felipe Rubin ◽  
Rafael Bellé ◽  
...  

Although not being the first viral pandemic to affect humankind, we are now for the first time faced with a pandemic caused by a coronavirus. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been responsible for the COVID-19 pandemic, which caused more than 4.5 million deaths worldwide. Despite unprecedented efforts, with vaccines being developed in a record time, SARS-CoV-2 continues to spread worldwide with new variants arising in different countries. Such persistent spread is in part enabled by public resistance to vaccination in some countries, and limited access to vaccines in other countries. The limited vaccination coverage, the continued risk for resistant variants, and the existence of natural reservoirs for coronaviruses, highlight the importance of developing additional therapeutic strategies against SARS-CoV-2 and other coronaviruses. At the beginning of the pandemic it was suggested that countries with Bacillus Calmette-Guérin (BCG) vaccination programs could be associated with a reduced number and/or severity of COVID-19 cases. Preliminary studies have provided evidence for this relationship and further investigation is being conducted in ongoing clinical trials. The protection against SARS-CoV-2 induced by BCG vaccination may be mediated by cross-reactive T cell lymphocytes, which recognize peptides displayed by class I Human Leukocyte Antigens (HLA-I) on the surface of infected cells. In order to identify potential targets of T cell cross-reactivity, we implemented an in silico strategy combining sequence-based and structure-based methods to screen over 13,5 million possible cross-reactive peptide pairs from BCG and SARS-CoV-2. Our study produced (i) a list of immunogenic BCG-derived peptides that may prime T cell cross-reactivity against SARS-CoV-2, (ii) a large dataset of modeled peptide-HLA structures for the screened targets, and (iii) new computational methods for structure-based screenings that can be used by others in future studies. Our study expands the list of BCG peptides potentially involved in T cell cross-reactivity with SARS-CoV-2-derived peptides, and identifies multiple high-density “neighborhoods” of cross-reactive peptides which could be driving heterologous immunity induced by BCG vaccination, therefore providing insights for future vaccine development efforts.


Author(s):  
Md Atique Ahmed ◽  
Gauspasha Yusuf Deshmukh ◽  
Rehan Haider Zaidi ◽  
Ahmed Saif ◽  
Mohammed Abdulrahman Alshahrani ◽  
...  

Malaria is a major public health concern, and any tangible intervention during the pre-elimination phase can result in a significant reduction in infection rates. Recent studies have reported that antigens producing cross-protective immunity can play an important role as vaccines and halt malaria transmission in different endemic regions. In this study, we studied the genetic diversity, natural selection, and discovered novel conserved epitopes of a high molecular weight rhoptry protein 2 (RhopH2) in clinical samples of Plasmodium knowlesi and Plasmodium vivax cross-protective domains, which has been proven to produce cross-protective immunity in both species. We found low levels of nucleotide diversity (P. knowlesi; π ~ 0.0093, SNPs = 49 and P. vivax π ~ 0.0014, SNPs = 23) in P. knowlesi (n = 40) and P. vivax (n = 65) samples in the PkRhopH2 cross-protective domain. Strong purifying selection was observed for both species (P. knowlesi; dS - dN = 2.41, p < 0.009, P. vivax; dS - dN = 1.58, p < 0.050). In silico epitope prediction in P. knowlesi identified 10 potential epitopes, of which 7 epitopes were 100% conserved within clinical samples. Of these epitopes, an epitope with 10 amino acids (QNSKHFKKEK) was found to be fully conserved within all P. knowlesi and P. vivax clinical samples and 80%–90% conservation within simian malaria ortholog species, i.e., P. coatneyi and P. cynomolgi. Phylogenetic analysis of the PkRhopH2 cross-protective domain showed geographical clustering, and three subpopulations of P. knowlesi were identified of which two subpopulations originated from Sarawak, Malaysian Borneo, and one comprised only the laboratory lines from Peninsular Malaysia. This study suggests that RhopH2 could be an excellent target for cross-protective vaccine development with potential for outwitting strain as well as species-specific immunity. However, more detailed studies on genetic diversity using more clinical samples from both species as well as the functional role of antibodies specific to the novel conserved epitope identified in this study can be explored for protection against infection.


Vaccines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 113
Author(s):  
Jamie Medley ◽  
Aaron Goff ◽  
Paulo J. G. Bettencourt ◽  
Madelaine Dare ◽  
Liam Cole ◽  
...  

New strategies are required to reduce the worldwide burden of tuberculosis. Intracellular survival and replication of Mycobacterium tuberculosis after macrophage phagocytosis is a fundamental step in the complex host–pathogen interactions that lead to granuloma formation and disease. Greater understanding of how the bacterium survives and thrives in these environments will inform novel drug and vaccine discovery programs. Here, we use in-depth RNA sequencing of Mycobacterium bovis BCG from human THP-1 macrophages to describe the mycobacterial adaptations to the intracellular environment. We identify 329 significantly differentially regulated genes, highlighting cholesterol catabolism, the methylcitrate cycle and iron homeostasis as important for mycobacteria inside macrophages. Examination of multi-functional gene families revealed that 35 PE/PPE genes and five cytochrome P450 genes were upregulated 24 h after infection, highlighting pathways of potential significance. Comparison of the intracellular transcriptome to gene essentiality and immunogenicity studies identified 15 potential targets that are both required for intracellular survival and induced on infection, and eight upregulated genes that have been demonstrated to be immunogenic in TB patients. Further insight into these new and established targets will support drug and vaccine development efforts.


2022 ◽  
Vol 16 (1) ◽  
pp. e0010069
Author(s):  
Alison A. Bettis ◽  
Maïna L’Azou Jackson ◽  
In-Kyu Yoon ◽  
J. Gabrielle Breugelmans ◽  
Ana Goios ◽  
...  

Chikungunya fever is an acute febrile illness that is often associated with severe polyarthralgia in humans. The disease is caused by chikungunya virus (CHIKV), a mosquito-borne alphavirus. Since its reemergence in 2004, the virus has spread throughout the tropical world and several subtropical areas affecting millions of people to become a global public health issue. Given the significant disease burden, there is a need for medical countermeasures and several vaccine candidates are in clinical development. To characterize the global epidemiology of chikungunya and inform vaccine development, we undertook a systematic literature review in MEDLINE and additional public domain sources published up to June 13, 2020 and assessed epidemiological trends from 1999 to 2020. Observational studies addressing CHIKV epidemiology were included and studies not reporting primary data were excluded. Only descriptive analyses were conducted. Of 3,883 relevant sources identified, 371 were eligible for inclusion. 46% of the included studies were published after 2016. Ninety-seven outbreak reports from 45 countries and 50 seroprevalence studies from 31 countries were retrieved, including from Africa, Asia, Oceania, the Americas, and Europe. Several countries reported multiple outbreaks, but these were sporadic and unpredictable. Substantial gaps in epidemiological knowledge were identified, specifically granular data on disease incidence and age-specific infection rates. The retrieved studies revealed a diversity of methodologies and study designs, reflecting a lack of standardized procedures used to characterize this disease. Nevertheless, available epidemiological data emphasized the challenges to conduct vaccine efficacy trials due to disease unpredictability. A better understanding of chikungunya disease dynamics with appropriate granularity and better insights into the duration of long-term population immunity is critical to assist in the planning and success of vaccine development efforts pre and post licensure.


2022 ◽  
Vol 12 ◽  
Author(s):  
Akitsu Masuda ◽  
Jae Man Lee ◽  
Takeshi Miyata ◽  
Hiroaki Mon ◽  
Keita Sato ◽  
...  

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a spread of coronavirus disease 2019 (COVID-19) globally. In order to end the COVID-19 pandemic, an effective vaccine against SARS-CoV-2 must be produced at low cost and disseminated worldwide. The spike (S) protein of coronaviruses plays a pivotal role in the infection to host cells. Therefore, targeting the S protein is one of the most rational approaches in developing vaccines and therapeutic agents. In this study, we optimized the expression of secreted trimerized S protein of SARS-CoV-2 using a silkworm-baculovirus expression vector system and evaluated its immunogenicity in mice. The results showed that the S protein forming the trimeric structure was the most stable when the chicken cartilage matrix protein was used as the trimeric motif and could be purified in large amounts from the serum of silkworm larvae. The purified S protein efficiently induced antigen-specific antibodies in mouse serum without adjuvant, but its ability to induce neutralizing antibodies was low. After examining several adjuvants, the use of Alum adjuvant was the most effective in inducing strong neutralizing antibody induction. We also examined the adjuvant effect of paramylon from Euglena gracilis when administered with the S protein. Our results highlight the effectiveness and suitable construct design of the S protein produced in silkworms for the subunit vaccine development against SARS-CoV-2.


Sign in / Sign up

Export Citation Format

Share Document