Assessing working memory capacity through picture span and feature binding with visual-graphic symbols during a visual search task with typical children and adults

Author(s):  
Barry T. Wagner ◽  
Lauren A. Shaffer ◽  
Olivia A Ivanson ◽  
James A. Jones
2009 ◽  
Vol 62 (7) ◽  
pp. 1430-1454 ◽  
Author(s):  
Bradley J. Poole ◽  
Michael J. Kane

Variation in working-memory capacity (WMC) predicts individual differences in only some attention-control capabilities. Whereas higher WMC subjects outperform lower WMC subjects in tasks requiring the restraint of prepotent but inappropriate responses, and the constraint of attentional focus to target stimuli against distractors, they do not differ in prototypical visual-search tasks, even those that yield steep search slopes and engender top-down control. The present three experiments tested whether WMC, as measured by complex memory span tasks, would predict search latencies when the 1–8 target locations to be searched appeared alone, versus appearing among distractor locations to be ignored, with the latter requiring selective attentional focus. Subjects viewed target-location cues and then fixated on those locations over either long (1,500–1,550 ms) or short (300 ms) delays. Higher WMC subjects identified targets faster than did lower WMC subjects only in the presence of distractors and only over long fixation delays. WMC thus appears to affect subjects’ ability to maintain a constrained attentional focus over time.


2010 ◽  
Vol 6 (6) ◽  
pp. 130-130
Author(s):  
K. Sobel ◽  
M. Gerrie ◽  
M. Kane ◽  
B. Poole

2020 ◽  
pp. 174702182096626
Author(s):  
Lingxia Fan ◽  
Lin Zhang ◽  
Liuting Diao ◽  
Mengsi Xu ◽  
Ruiyang Chen ◽  
...  

Recent studies have demonstrated that in visual working memory (VWM), only items in an active state can guide attention. Further evidence has revealed that items with higher perceptual salience or items prioritised by a valid retro-cue in VWM tend to be in an active state. However, it is unclear which factor (perceptual salience or retro-cues) is more important for influencing the item state in VWM or whether the factors can act concurrently. Experiment 1 examined the role of perceptual salience by asking participants to hold two features with relatively different perceptual salience (colour vs. shape) in VWM while completing a visual search task. Guidance effects were found when either colour or both colour and shape in VWM matched one of the search distractors but not when shape matched. This demonstrated that the more salient feature in VWM can actively guide attention, while the less salient feature cannot. However, when shape in VWM was cued to be more relevant (prioritised) in Experiment 2, we found guidance effects in both colour-match and shape-match conditions. That is, both more salient but non-cued colour and less salient but cued shape could be active in VWM, such that attentional selection was affected by the matching colour or shape in the visual search task. This suggests that bottom-up perceptual salience and top-down retro-cues can jointly determine the active state in VWM.


2007 ◽  
Vol 14 (5) ◽  
pp. 840-845 ◽  
Author(s):  
Kenith V. Sobel ◽  
Matthew P. Gerrie ◽  
Bradley J. Poole ◽  
Michael J. Kane

2016 ◽  
Vol 113 (13) ◽  
pp. 3693-3698 ◽  
Author(s):  
John M. Gaspar ◽  
Gregory J. Christie ◽  
David J. Prime ◽  
Pierre Jolicœur ◽  
John J. McDonald

According to contemporary accounts of visual working memory (vWM), the ability to efficiently filter relevant from irrelevant information contributes to an individual’s overall vWM capacity. Although there is mounting evidence for this hypothesis, very little is known about the precise filtering mechanism responsible for controlling access to vWM and for differentiating low- and high-capacity individuals. Theoretically, the inefficient filtering observed in low-capacity individuals might be specifically linked to problems enhancing relevant items, suppressing irrelevant items, or both. To find out, we recorded neurophysiological activity associated with attentional selection and active suppression during a competitive visual search task. We show that high-capacity individuals actively suppress salient distractors, whereas low-capacity individuals are unable to suppress salient distractors in time to prevent those items from capturing attention. These results demonstrate that individual differences in vWM capacity are associated with the timing of a specific attentional control operation that suppresses processing of salient but irrelevant visual objects and restricts their access to higher stages of visual processing.


2019 ◽  
Author(s):  
Cherie Zhou ◽  
Monicque M. Lorist ◽  
Sebastiaan Mathôt

AbstractDuring visual search, task-relevant representations in visual working memory (VWM), known as attentional templates, are assumed to guide attention. A current debate concerns whether only one (Single-Item-Template hypothesis, or SIT) or multiple (Multiple-Item-Template hypothesis, or MIT) items can serve as attentional templates simultaneously. The current study was designed to test these two hypotheses. Participants memorized two colors, prior to a visual-search task in which the target and the distractor could match or not match the colors held in VWM. Robust attentional guidance was observed when one of the memory colors was presented as the target (reduced response times [RTs] on target-match trials) or the distractor (increased RTs on distractor-match trials). We constructed two drift-diffusion models that implemented the MIT and SIT hypotheses, which are similar in their predictions about overall RTs, but differ in their predictions about RTs on individual trials. Critically, simulated RT distributions and error rates revealed a better match of the MIT hypothesis to the observed data than the SIT hypothesis. Taken together, our findings provide behavioral and computational evidence for the concurrent guidance of attention by multiple items in VWM.Significance statementTheories differ in how many items within visual working memory can guide attention at the same time. This question is difficult to address, because multiple- and single-item-template theories make very similar predictions about average response times. Here we use drift-diffusion modeling in addition to behavioral data, to model response times at an individual level. Crucially, we find that our model of the multiple-item-template theory predicts human behavior much better than our model of the single-item-template theory; that is, modeling of behavioral data provides compelling evidence for multiple attentional templates that are simultaneously active.


Sign in / Sign up

Export Citation Format

Share Document