Visualization and comparison of aircraft trajectories using Gaussian-Smoothed heatmaps

2021 ◽  
pp. 1-10
Author(s):  
Joseph Burris ◽  
Kathryn Ballard ◽  
Sara R. Wilson ◽  
David J. Edwards
Aerospace ◽  
2020 ◽  
Vol 7 (11) ◽  
pp. 158
Author(s):  
Andrew Weinert

As unmanned aerial systems (UASs) increasingly integrate into the US national airspace system, there is an increasing need to characterize how commercial and recreational UASs may encounter each other. To inform the development and evaluation of safety critical technologies, we demonstrate a methodology to analytically calculate all potential relative geometries between different UAS operations performing inspection missions. This method is based on a previously demonstrated technique that leverages open source geospatial information to generate representative unmanned aircraft trajectories. Using open source data and parallel processing techniques, we performed trillions of calculations to estimate the relative horizontal distance between geospatial points across sixteen locations.


Author(s):  
Cédric Rommel ◽  
Joseph Frédéric Bonnans ◽  
Baptiste Gregorutti ◽  
Pierre Martinon

In this paper, we tackle the problem of quantifying the closeness of a newly observed curve to a given sample of random functions, supposed to have been sampled from the same distribution. We define a probabilistic criterion for such a purpose, based on the marginal density functions of an underlying random process. For practical applications, a class of estimators based on the aggregation of multivariate density estimators is introduced and proved to be consistent. We illustrate the effectiveness of our estimators, as well as the practical usefulness of the proposed criterion, by applying our method to a dataset of real aircraft trajectories.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1708
Author(s):  
Rafael Casado ◽  
Aurelio Bermúdez

Conflict detection and resolution is one of the main topics in air traffic management. Traditional approaches to this problem use all the available information to predict future aircraft trajectories. In this work, we propose the use of a neural network to determine whether a particular configuration of aircraft in the final approach phase will break the minimum separation requirements established by aviation rules. To achieve this, the network must be effectively trained with a large enough database, in which configurations are labeled as leading to conflict or not. We detail the way in which this training database has been obtained and the subsequent neural network design and training process. Results show that a simple network can provide a high accuracy, and therefore, we consider that it may be the basis of a useful decision support tool for both air traffic controllers and airborne autonomous navigation systems.


Sign in / Sign up

Export Citation Format

Share Document