Research on evaluation methodologies of product life cycle engineering design (LCED) and development of its tools

2008 ◽  
Vol 21 (8) ◽  
pp. 923-942 ◽  
Author(s):  
Yi Jianjun ◽  
Ji Baiyang ◽  
Guan Yifeng ◽  
Dong Jinxiang ◽  
Li Chenggang
Author(s):  
David E. Lee ◽  
Michel A. Melkanoff

Abstract Traditional engineering analysis of product designs has focused primarily on a product’s operational performance without considering costs of manufacturing and other stages downstream from design. In contrast, life cycle analysis of a product during its initial development can play a crucial role in determining the product’s overall life cycle cost and useful life span. This paper examines product life cycle engineering analysis - measurement of product operational performance in a life cycle context. Life cycle engineering analysis is thus considered both as an extension of traditional engineering analysis methods and as a subset of a total product life cycle analysis. The issues critical to life cycle engineering analysis are defined and include product life cycle data modeling and analysis, analysis tools and their performance regimes, performance tradeoff measurement and problems of life cycle engineering analysis in an organizational context. Recommendations are provided for future research directions into life cycle engineering analysis in the context of integration architectures for concurrent engineering.


Author(s):  
Yoshinobu Kitamura ◽  
Riichiro Mizoguchi

Function is an important aspect of artifacts in engineering design. Although many definitions of function have been proposed in the extensive research mainly in engineering design and philosophy, the relationship among them remains unclear. Aiming at a contribution to this problem, this paper investigates some ontological issues based on the role concept in ontological engineering. We discuss some ontological distinctions of function such as essentiality and actuality and then propose some fundamental kinds of function such as essential function and capacity function. Based on them, we categorize some existing definitions in the literature and clarify the relationship among them. Then, a model of function in a product life-cycle is proposed. It represents the changes of existence of the individuals of each kind of function, which are caused by designing, manufacturing and use. That model enables us to give answers to some ontological questions such as when and where a function exists and what a function depends on. The consideration on these issues provides engineers with some differentiated viewpoints for capturing functions and thus contributes to consistent functional modeling from a specific viewpoint. The clarified relationships among the kinds of function including the existing definitions in the literature will contribute to interoperability among functional models based on the different kinds and/or definitions.


Author(s):  
Tommaso Fasoli ◽  
Sergio Terzi ◽  
Erkki Jantunen ◽  
Juha Kortelainen ◽  
Juha Sääski ◽  
...  

1995 ◽  
Vol 117 (B) ◽  
pp. 42-47 ◽  
Author(s):  
K. Ishii

Life-cycle engineering seeks to incorporate various product life-cycle values into the early stages of design. These values include functional performance, manufacturability, serviceability, and environmental impact. We start with a survey of life-cycle engineering research focusing on methodologies and tools. Further, the paper addresses critical research issues in life-cycle design tools: design representation and measures for life-cycle evaluation. The paper describes our design representation scheme based on a semantic network that is effective for evaluating the structural layout. Evaluation measures for serviceability and recyclability illustrate the practical use of these representation schemes.


Sign in / Sign up

Export Citation Format

Share Document