scholarly journals Cellular adaptive response and regulation of HIF after low dose gamma-radiation exposure

2018 ◽  
Vol 94 (9) ◽  
pp. 809-814 ◽  
Author(s):  
Nitin Motilal Gandhi
2018 ◽  
Author(s):  
Nitin Motilal Gandhi

AbstractPurposeCellular damage due to low dose of γ-radiation (≤0.1 Gy) is generally extrapolated from observing the effects at higher doses. These estimations are not accurate. This has led to uncertainties while assessing the radiation risk factors at low doses. Although there are reports on the radiation induced adaptive response, the mechanism of action is not fully elucidated, leading to the uncertainties. One of the outcomes of low dose radiation exposure is believed to be adaptive response. The mechanism of adaptive response is not fully understood. Therefore, the study was undertaken to understand the role of hypoxia inducible factor (HIF) on radiation induced adaptive response.Materials and methodsMCF-7 cells pre-exposed to low dose γ-radiation (0.1 Gy; Priming dose) were exposed to 2 Gy (challenging dose) 8 hrs after the priming dose and studied for the adaptive response. Cell death was measured by MTT assay, and apoptosis was measured by FACS analysis. DNA damage was measures by alkaline comet assay. HIF transcription activity was assayed using transiently transfected plasmid having HIF consensus sequence and luciferase as the reporter gene.ResultsCells when exposed to 0.1 Gy priming dose 8 hrs prior to the higher dose (2 Gy; Challenging dose) results in lower amount of radiation induced damages compared to the cells exposed to 2 Gy alone. Cobalt chloride treatment in place of priming dose also results in the protection to cells when exposed to challenging dose. There was up-regulation of HIF activity when cells were exposed to priming dose, indicating the role of HIF in radiation induced response.ConclusionResults indicate the γ-radiation induced adaptive response. One of the mechanism proposed is up-regulation of HIF after low dose exposure, which protects the cells from damages when they are exposed to challenging dose of 2 Gy radiation dose.


Dose-Response ◽  
2007 ◽  
Vol 5 (4) ◽  
pp. dose-response.0 ◽  
Author(s):  
Cheryl L. Cassidy ◽  
Jennifer A. Lemon ◽  
Douglas R. Boreham

Chinook salmon cells were exposed to gamma radiation and chromosome damage was assessed using the micronucleus assay. The salmon cells were resistant to radiation at all doses compared to human and mammalian cells. We used an indirect approach to determine if prior low dose exposures at environmental dose levels might alter the consequences of radiation exposures to high doses of radiation (adaptive response). The cells adapted but only at doses which were above levels that might be expected environmentally. The “adaptive response” endpoint was useful to show biological responses to exposure, however, under these conditions it might not help in risk assessment of aquatic organisms since the cells seem to be very resistant and environmental radiation levels are typically extremely low. Preliminary experiments were conducted on two other fish cell model systems (Rainbow Trout and Medaka) to optimize conditions for the micronucleus assay for future environmental radiation studies. Since fish cells appear to be more radiation resistant than mammalian cells, we postulate that radiation risk in the whole organism may also be lower. Therefore whole body studies designed to test effects with the specific aim of assessing relative risk between species are in process.


Author(s):  
Srikanth Nayak ◽  
Arivudai Nambi ◽  
Sathish Kumar ◽  
P Hariprakash ◽  
Pradeep Yuvaraj ◽  
...  

AbstractNumerous studies have documented the adverse effects of high-dose radiation on hearing in patients. On the other hand, radiographers are exposed to a low dose of ionizing radiation, and the effect of a low dose of radiation on hearing is quite abstruse. Therefore, the present systematic review aimed to elucidate the effect of low-dose ionizing radiation on hearing. Two authors independently carried out a comprehensive data search in three electronic databases, including PUBMED/MEDLINE, CINAHL, and SCOPUS. Eligible articles were independently assessed for quality by two authors. Cochrane Risk of Bias tool was used assess quality of the included studies. Two articles met the low-dose radiation exposure criteria given by Atomic Energy Regulatory Board (AERB) and National Council on Radiation Protection (NCRP) guidelines. Both studies observed the behavioral symptoms, pure-tone hearing sensitivity at the standard, extended high frequencies, and the middle ear functioning in low-dose radiation-exposed individuals and compared with age and gender-matched controls. One study assessed the cochlear function using transient-evoked otoacoustic emissions (TEOAE). Both studies reported that behavioral symptoms of auditory dysfunction and hearing thresholds at extended high frequencies were higher in radiation-exposed individuals than in the controls. The current systematic review concludes that the low-dose ionizing radiation may affect the hearing adversely. Nevertheless, further studies with robust research design are required to explicate the cause and effect relationship between the occupational low-dose ionizing radiation exposure and hearing.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1209
Author(s):  
Gabriel Keller ◽  
Simon Götz ◽  
Mareen Sarah Kraus ◽  
Leonard Grünwald ◽  
Fabian Springer ◽  
...  

This study analyzed the radiation exposure of a new ultra-low dose (ULD) protocol compared to a high-quality (HQ) protocol for CT-torsion measurement of the lower limb. The analyzed patients (n = 60) were examined in the period March to October 2019. In total, 30 consecutive patients were examined with the HQ and 30 consecutive patients with the new ULD protocol comprising automatic tube voltage selection, automatic exposure control, and iterative image reconstruction algorithms. Radiation dose parameters as well as the contrast-to-noise ratio (CNR) and diagnostic confidence (DC; rated by two radiologists) were analyzed and potential predictor variables, such as body mass index and body volume, were assessed. The new ULD protocol resulted in significantly lower radiation dose parameters, with a reduction of the median total dose equivalent to 0.17 mSv in the ULD protocol compared to 4.37 mSv in the HQ protocol (p < 0.001). Both groups showed no significant differences in regard to other parameters (p = 0.344–0.923). CNR was 12.2% lower using the new ULD protocol (p = 0.033). DC was rated best by both readers in every HQ CT and in every ULD CT. The new ULD protocol for CT-torsion measurement of the lower limb resulted in a 96% decrease of radiation exposure down to the level of a single pelvic radiograph while maintaining good image quality.


Sign in / Sign up

Export Citation Format

Share Document