scholarly journals A systematic review on the effect of low-dose radiation on hearing

Author(s):  
Srikanth Nayak ◽  
Arivudai Nambi ◽  
Sathish Kumar ◽  
P Hariprakash ◽  
Pradeep Yuvaraj ◽  
...  

AbstractNumerous studies have documented the adverse effects of high-dose radiation on hearing in patients. On the other hand, radiographers are exposed to a low dose of ionizing radiation, and the effect of a low dose of radiation on hearing is quite abstruse. Therefore, the present systematic review aimed to elucidate the effect of low-dose ionizing radiation on hearing. Two authors independently carried out a comprehensive data search in three electronic databases, including PUBMED/MEDLINE, CINAHL, and SCOPUS. Eligible articles were independently assessed for quality by two authors. Cochrane Risk of Bias tool was used assess quality of the included studies. Two articles met the low-dose radiation exposure criteria given by Atomic Energy Regulatory Board (AERB) and National Council on Radiation Protection (NCRP) guidelines. Both studies observed the behavioral symptoms, pure-tone hearing sensitivity at the standard, extended high frequencies, and the middle ear functioning in low-dose radiation-exposed individuals and compared with age and gender-matched controls. One study assessed the cochlear function using transient-evoked otoacoustic emissions (TEOAE). Both studies reported that behavioral symptoms of auditory dysfunction and hearing thresholds at extended high frequencies were higher in radiation-exposed individuals than in the controls. The current systematic review concludes that the low-dose ionizing radiation may affect the hearing adversely. Nevertheless, further studies with robust research design are required to explicate the cause and effect relationship between the occupational low-dose ionizing radiation exposure and hearing.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 507-507
Author(s):  
Vadim Ivanov ◽  
Tatiana Terehovich ◽  
Eugene Ivanov

Abstract Abstract 507 The question of whether child acute leukemia (ChAL) incidence has changed as a result of Chernobyl is of great scientific and public interest. Our initial report (Nature, 1993) showed no increase in the incidence rates (IR) of ChAL in Belarus in the whole group of children (0–14 y.o.) 5 years (1986 – 1991) after accident. This data were confirmed in several European countries. As concerns infant's AL (0–1 y.o.), Petridou et al. reported 2.6 times increase of AL in Greek infants, exposed in utero to Chernobyl radiation. No significant difference in IR was found among children aged 1 – 4 y.o. or older. All epidemiological data concerning separate analysis of infant (0–1 y.o.) ChL was concentrated on the first decade after Chernobyl and no any systematic data is available after 1996. Since 1979 the occurrence of leukemia has been documented accurately through the Registry of Blood diseases. The patients had to be inhabitants of Belarus and were grouped by age at diagnosis. AL diagnostic accuracy was confirmed by the international experts. Rates were standardized directly to the standard world population. We present the age-cohort-period analyses of IR trends of ChAL from 1979 to 2006 in Belarus. It comprised 1077 ChAL cases (0–4 y.o.). Number of cases and equivalent doses of whole body radiation exposure was tabulated by age at diagnosis and period of observation (seven pre-accident years, 1979–1985) and post-accident 7-year periods: 1986–1992, 1993–1999 and 2000–2006. During first 7 years after the accident (1986–1992) the IR of infant AL (0–1 y.o.) increased significantly – from 49 (IR=4.33) before Chernobyl to 67 cases (IR=6.36) in 1986–1992 (RR=1.47; p=0.04). Older age group (1–4 y.o.) did not show any increase in ChAL rates. Following 7-years period (1993–1999) revealed the statistically significant decrease of incidence of infant leukemia: from 49 (IR=4.33) before Chernobyl to 16 cases (IR=2.29) in 1993–1999 years (RR=0.53; p=0.024). Surprisingly, during the next 7 years (2000–2006) we found a further decrease of the incidence of infant leukemia with only 3 cases (IR=0.47) in 7 years. It is highly significant when compared with 49 cases (IR=4.33) before Chernobyl (p= 0.0000053, RR=0.11) and 67 cases (IR=6.36) appeared during first 7 years following Chernobyl accident (p < 0.0000001, RR=0.04). As concerns the older group (1–4 y.o.) we did not find any decrease of IR into the second (1993–1999) and third (2000–2006) 7-year periods. Actually we are working on the next time period (2007–2010) and new upgraded data will be presented. Long-term analysis of incidence of post-Chernobyl childhood acute leukemia permitted to discover the biphasic dynamics of infant's AL incidence rate. Significant increase into the first 7-year period followed by dramatic decrease between year +8 and year + 21. From radiological point of view it is relatively simpler to explain the increase into the first 7 years, because ionizing radiation is one of the few exposures for which the casual relationship with childhood leukemia has been established. Much more difficult to explain following after decrease in incidence rate of infant leukemia in Belarus. Can we speculate about the “adaptation-to-radiation” mechanisms? Over the past decades the growing body of data from cell cultures, experimental animals and humans suggests that low-dose ionizing radiation may have some beneficial (hormetic or adoptive) effect. Several epidemiological studies (India, China, Japan, USA) of a long-term low dose environmental irradiation are in favor of the hypothesis of radiation hormesis or adaptation. The carcinogenic effects of low dose radiation exposure may be restricted to children exposed in utero or in early infancy (0-12 months) during the first years after explosion. Following after dramatic decrease of IRs of infant leukemia might be explained by the developing of adaptive response to chronic low dose ionizing radiation exposure. The presented data may be one of the first clinical evidence concerning human ability of adaptation to long-term low dose radiation. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 41 (5) ◽  
pp. e223-e230 ◽  
Author(s):  
Cameron Y. S. Lee ◽  
Thomas M. Koval ◽  
Jon B. Suzuki

Regulations for protecting humans against stochastic biological effects from ionizing radiation are based on the linear no-threshold (LNT) risk assessment model, which states that any amount of radiation exposure may lead to cancer in a population. Based on the LNT model, risk from low-dose radiation increases linearly with increasing doses of radiation. Imaging procedures in medicine and dentistry are an important source of low-dose ionizing radiation. The increased use of computerized tomography (CT) and cone beam computerized tomography (CBCT) has raised health concerns regarding exposure to low-dose ionizing radiation. In oral and maxillofacial surgery and implant dentistry, CBCT is now at the forefront of this controversy. Although caution has been expressed, there have been no direct studies linking radiation exposure from CT and CBCT used in dental imaging with cancer induction. This article describes the concerns about radiation exposure in dental imaging regarding the use of CT.


2002 ◽  
Vol 21 (2) ◽  
pp. 85-90 ◽  
Author(s):  
L E Feinendegen

This review first summarizes experimental data on biological effects of different concentrations of ROS in mammalian cells and on their potential role in modifying cell responses to toxic agents. It then attempts to link the role of steadily produced metabolic ROS at various concentrations in mammalian cells to that of environmentally derived ROS bursts from exposure to ionizing radiation. The ROS from both sources are known to both cause biological damage and change cellular signaling, depending on their concentration at a given time. At low concentrations signaling effects of ROS appear to protect cellular survival and dominate over damage, and the reverse occurs at high ROS concentrations. Background radiation generates suprabasal ROS bursts along charged particle tracks several times a year in each nanogram of tissue, i.e., average mass of a mammalian cell. For instance, a burst of about 200 ROS occurs within less than a microsecond from low-LET irradiation such as X-rays along the track of a Compton electron (about 6 keV, ranging about 1 μm). One such track per nanogram tissue gives about 1 mGy to this mass. The number of instantaneous ROS per burst along the track of a 4-meV ¬-particle in 1 ng tissue reaches some 70000. The sizes, types and sites of these bursts, and the time intervals between them directly in and around cells appear essential for understanding low-dose and low dose-rate effects on top of effects from endogenous ROS. At background and low-dose radiation exposure, a major role of ROS bursts along particle tracks focuses on ROS-induced apoptosis of damage-carrying cells, and also on prevention and removal of DNA damage from endogenous sources by way of temporarily protective, i.e., adaptive, cellular responses. A conclusion is to consider low-dose radiation exposure as a provider of physiological mechanisms for tissue homoeostasis.


2017 ◽  
Vol 58 (3) ◽  
pp. 329-340 ◽  
Author(s):  
Ji-Hye Yim ◽  
Jung Mi Yun ◽  
Ji Young Kim ◽  
In Kyung Lee ◽  
Seon Young Nam ◽  
...  

Abstract Ionizing radiation causes biological damage that leads to severe health effects. However, the effects and subsequent health implications caused by exposure to low-dose radiation are unclear. The objective of this study was to determine phosphoprotein profiles in normal human fibroblast cell lines in response to low-dose and high-dose γ-radiation. We examined the cellular response in MRC-5 cells 0.5 h after exposure to 0.05 or 2 Gy. Using 1318 antibodies by antibody array, we observed ≥1.3-fold increases in a number of identified phosphoproteins in cells subjected to low-dose (0.05 Gy) and high-dose (2 Gy) radiation, suggesting that both radiation levels stimulate distinct signaling pathways. Low-dose radiation induced nucleic acid–binding transcription factor activity, developmental processes, and multicellular organismal processes. By contrast, high-dose radiation stimulated apoptotic processes, cell adhesion and regulation, and cellular organization and biogenesis. We found that phospho-BTK (Tyr550) and phospho-Gab2 (Tyr643) protein levels at 0.5 h after treatment were higher in cells subjected to low-dose radiation than in cells treated with high-dose radiation. We also determined that the phosphorylation of BTK and Gab2 in response to ionizing radiation was regulated in a dose-dependent manner in MRC-5 and NHDF cells. Our study provides new insights into the biological responses to low-dose γ-radiation and identifies potential candidate markers for monitoring exposure to low-dose ionizing radiation.


2011 ◽  
Vol 175 (5) ◽  
pp. 665-676 ◽  
Author(s):  
R. E. J. Mitchel ◽  
M. Hasu ◽  
M. Bugden ◽  
H. Wyatt ◽  
M. P. Little ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document