Comparison of hip extensor muscle activity including the adductor magnus during three prone hip extension exercises

2018 ◽  
Vol 35 (5) ◽  
pp. 451-457 ◽  
Author(s):  
Han-i Ko ◽  
Seung-yeon Jeon ◽  
Si-hyun Kim ◽  
Kyue-nam Park
2020 ◽  
pp. 1-9
Author(s):  
Neal R. Glaviano ◽  
David M. Bazett-Jones

Context: Hip muscle strength has previously been evaluated in various sagittal plane testing positions. Altering the testing position appears to have an influence on hip muscle torque during hip extension, abduction, and external rotation. However, it is unknown how altering the testing position influences hip muscle activity during these commonly performed assessments. Objectives: To evaluate how hip sagittal plane position influences hip muscle activation and torque output. Study Design: Cross-sectional. Setting: Laboratory. Patients or Other Participants: A total of 22 healthy females (age = 22.1 [1.4] y; mass = 63.4 [11.3] kg; height = 168.4 [6.2] cm) were recruited. Intervention: None. Main Outcome Measures: Participants completed isometric contractions with surface electromyography on the superior and inferior gluteus maximus; anterior, middle, and posterior gluteus medius; biceps femoris, semitendinosus, adductor longus, and tensor fascia latae. Extension and external rotation were tested in 0°, 45°, and 90° of hip flexion and abduction was tested in −5°, 0°, and 45° of hip flexion. Repeated-measures analysis of variances were used for statistical analysis (P ≤ .01). Results: Activation of gluteal (P < .007), semitendinosus (P = .002), and adductor longus (P = .001) muscles were lesser for extension at 90° versus less flexed positions. Adductor longus activity was greatest during 90° of hip flexion for external rotation torque testing (P < .001). Tensor fascia latae (P < .001) and gluteus maximus (P < .001) activities were greater in 45° of hip flexion. Significant differences in extension (P < .001) and abduction (P < .001) torque were found among positions. Conclusions: Position when assessing hip extension and abduction torque has an influence on both muscle activity and torque output but only muscle activity for hip external rotation torque. Clinicians should be aware of the influence of position on hip extension, abduction, and external rotation muscle testing and select a position most in line with their clinical goals.


2018 ◽  
Vol 8 (1) ◽  
pp. 29-33
Author(s):  
Tadanobu Suehiro ◽  
Hiroshi Ishida ◽  
Kenichi Kobara ◽  
Daisuke Fujita ◽  
Hiroshi Osaka ◽  
...  

2008 ◽  
Vol 24 (3) ◽  
pp. 298-303 ◽  
Author(s):  
Jennifer Di Domizio ◽  
Jeremy P.M. Mogk ◽  
Peter J. Keir

Wrist splints are commonly prescribed to limit wrist motion and provide support at night and during inactive periods but are often used in the workplace. In theory, splinting the wrist should reduce wrist extensor muscle activity by stabilizing the joint and reducing the need for co-contraction to maintain posture. Ten healthy volunteers underwent a series of 24 10-s gripping trials with surface electromyography on 6 forearm muscles. Trials were randomized between splinted and nonsplinted conditions with three wrist postures (30° flexion, neutral, and 30° extension) and four grip efforts. Custom-made Plexiglas splints were taped to the dorsum of the hand and wrist. It was found that when simply holding the dynamometer, use of a splint led to a small (<1% MVE) but significant reduction in activity for all flexor muscles and extensor carpi radialis (all activity <4% maximum). At maximal grip, extensor muscle activity was significantly increased with the splints by 7.9–23.9% MVE. These data indicate that splinting at low-to-moderate grip forces may act to support the wrist against external loading, but appears counterproductive when exerting maximal forces. Wrist bracing should be limited to periods of no to light activity and avoided during tasks that require heavy efforts.


2021 ◽  
Vol 2 ◽  
Author(s):  
Caroline Prince ◽  
Jean-Benoît Morin ◽  
Jurdan Mendiguchia ◽  
Johan Lahti ◽  
Kenny Guex ◽  
...  

To train hamstring muscle specifically to sprint, strengthening programs should target exercises associated with horizontal force production and high levels of hamstring activity. Therefore, the objectives of this study were to analyze the correlation between force production capacities during sprinting and hamstring strengthening exercises, and to compare hamstring muscle activity during sprinting and these exercises. Fourteen track and field regional level athletes performed two maximal 50-m sprints and six strengthening exercises: Nordic hamstring exercises without and with hip flexion, Upright-hip-extension in isometric and concentric modalities, Standing kick, and Slide-leg-bridge. The sprinting horizontal force production capacity at low (F0) and high (V0) speeds was computed from running velocity data. Hamstring muscle performances were assessed directly or indirectly during isolated exercises. Hamstring muscle electromyographic activity was recorded during all tasks. Our results demonstrate substantially large to very large correlations between V0 and performances in the Upright-hip-extension in isometric (rs = 0.56; p = 0.040), Nordic hamstring exercise without hip flexion (rs = 0.66; p = 0.012) and with 90° hip flexion (rs = 0.73; p = 0.003), and between F0 and Upright-hip-extension in isometric (rs = 0.60; p = 0.028) and the Nordic hamstring exercise without hip flexion (rs = 0.59; p = 0.030). However, none of the test exercises activated hamstring muscles more than an average of 60% of the maximal activation during top-speed sprinting. In conclusion, training programs aiming to be sprint-specific in terms of horizontal force production could include exercises such as the Upright-hip-extension and the Nordic hamstring exercise, in addition to maximal sprinting activity, which is the only exercise leading to high levels of hamstring muscle activity.


Sign in / Sign up

Export Citation Format

Share Document