force production
Recently Published Documents


TOTAL DOCUMENTS

1668
(FIVE YEARS 361)

H-INDEX

85
(FIVE YEARS 8)

Author(s):  
ASHKAN BABAEI ◽  
SEYED MOHAMMADREZA MIRI LAVASANI ◽  
PARVIN NASSIRI ◽  
YOUNES NOOROLLAHI

Despite abundant resources, the automotive industry is reported to adversely impact the environment owing to the use of heavy machinery, diverse and governmental management policies for car production per hour, remarkable employed labor force, production cycle timing, etc. For this purpose, many studies involving environmental risk management have been conducted. To this aim, the present study has been carried out in pre-paint part No. 2 of IKCO (preparation process). In this regard, using FUZZY FMEA and VIKOR methods, the identified risks were assessed and reformative measures and solutions were classified, respectively. A total of 15 individuals considered HSE experts of IKCO were selected as a statistical sample size according to the Morgan table. Consequently, the high level risks were identified and appropriate solutions were suggested to reduce the environmental effects, and according to achieved scores, “torch adjustments based on compliance report” with the objective of reducing air pollution was selected as the compromise solution. IKCO should consider torch adjustment based on compliance report actions as its first priority.


2022 ◽  
Vol 7 (1) ◽  
pp. 9
Author(s):  
Christopher B. Taber ◽  
Roy J. Colter ◽  
Jair J. Davis ◽  
Patrick A. Seweje ◽  
Dustin P. Wilson ◽  
...  

There has been limited research to explore the use of body tempering and when the use of this modality would be most appropriate. This study aimed to determine if a body tempering intervention would be appropriate pre-exercise by examining its effects on perceived soreness, range of motion (ROM), and force production compared to an intervention of traditional stretching. The subjects for this study were ten Division 1 (D1) football linemen from Sacred Heart University (Age: 19.9 ± 1.5 years, body mass: 130.9 ± 12.0 kg, height: 188.4 ± 5.1 cm, training age: 8.0 ± 3.5 years). Subjects participated in three sessions with the first session being baseline testing. The second and third sessions involved the participants being randomized to receive either the body tempering or stretching intervention for the second session and then receiving the other intervention the final week. Soreness using a visual analog scale (VAS), ROM, counter movement jump (CMJ) peak force and jump height, static jump (SJ) peak force and jump height, and isometric mid-thigh pull max force production were assessed. The results of the study concluded that body tempering does not have a negative effect on muscle performance but did practically reduce perceived muscle soreness. Since body tempering is effective at reducing soreness in athletes, it can be recommended for athletes as part of their pre-exercise warmup without negatively effecting isometric or dynamic force production.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ana Diaz-Artiles ◽  
Yiyu Wang ◽  
Madison M. Davis ◽  
Renee Abbott ◽  
Nathan Keller ◽  
...  

Many of the activities associated with spaceflight require individuals to coordinate actions between the limbs (e.g., controlling a rover, landing a spacecraft). However, research investigating the influence of gravity on bimanual coordination has been limited. The current experiment was designed to determine an individual’s ability to adapt to altered-gravity when performing a complex bimanual force coordination task, and to identify constraints that influence coordination dynamics in altered-gravity. A tilt table was used to simulate gravity on Earth [90° head-up tilt (HUT)] and microgravity [6° head-down tilt (HDT)]. Right limb dominant participants (N = 12) were required to produce 1:1 in-phase and 1:2 multi-frequency force patterns. Lissajous information was provided to guide performance. Participants performed 14, 20 s trials at 90° HUT (Earth). Following a 30-min rest period, participants performed, for each coordination pattern, two retention trials (Earth) followed by two transfer trials in simulated microgravity (6° HDT). Results indicated that participants were able to transfer their training performance during the Earth condition to the microgravity condition with no additional training. No differences between gravity conditions for measures associated with timing (interpeak interval ratio, phase angle slope ratio) were observed. However, despite the effective timing of the force pulses, there were differences in measures associated with force production (peak force, STD of peak force mean force). The results of this study suggest that Lissajous displays may help counteract manual control decrements observed during microgravity. Future work should continue to explore constraints that can facilitate or interfere with bimanual control performance in altered-gravity environments.


2022 ◽  
Author(s):  
Timothy D. Morris ◽  
Madhu Sridhar ◽  
Thomas Clark ◽  
Frederick Schulze ◽  
Chang-Kwon Kang ◽  
...  

2021 ◽  
Author(s):  
Daniel Clinton McFarland ◽  
Benjamin I Binder-Markey ◽  
Jennifer A Nichols ◽  
Sarah J Wohlman ◽  
Marije de Bruin ◽  
...  

Objective: The purpose of this work was to develop an open-source musculoskeletal model of the hand and wrist and to evaluate its performance during simulations of functional tasks. Methods: The musculoskeletal model was developed by adapting and expanding upon existing musculoskeletal models. An optimal control theory framework that combines forward-dynamics simulations with a simulated-annealing optimization was used to simulate maximum grip and pinch force. Active and passive hand opening were simulated to evaluate coordinated kinematic hand movements. Results: The model's maximum grip force production matched experimental measures of grip force, force distribution amongst the digits, and displayed sensitivity to wrist flexion. Simulated lateral pinch strength fell within variability of in vivo palmar pinch strength data. Additionally, predicted activation for 7 of 8 muscles fell within variability of EMG data during palmar pinch. The active and passive hand opening simulations predicted reasonable activations and demonstrated passive motion mimicking tenodesis, respectively. Conclusion: This work advances simulation capabilities of hand and wrist models and provides a foundation for future work to build upon. Significance: This is the first open-source musculoskeletal model of the hand and wrist to be implemented during both functional kinetic and kinematic tasks. We provide a novel simulation framework to predict maximal grip and pinch force which can be used to evaluate how potential surgical and rehabilitation interventions influence these functional outcomes while requiring minimal experimental data.


Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Raul Filipe Bartolomeu ◽  
Pedro Rodrigues ◽  
Catarina Costa Santos ◽  
Mário Jorge Costa ◽  
Tiago Manuel Barbosa

The different characteristics of the four swimming strokes affect the interplay between the four limbs, acting as a constraint to the force produced by each hand and foot. The purpose of this study was to analyze the symmetry of force production with a varying number of limbs in action and see its effect on velocity. Fifteen male swimmers performed four all-out bouts of 25-m swims in the four strokes in full-body stroke and segmental actions. A differential pressure system was used to measure the hands/feet propulsive force and a mechanical velocity meter was used to measure swimming velocity. Symmetry index was calculated based on the force values. All strokes and conditions presented contralateral limb asymmetries (ranging from 6.73% to 28% for the peak force and from 9.3% to 35.7% for the mean force). Backstroke was the most asymmetric stroke, followed-up by butterfly, front crawl, and breaststroke. Kicking conditions elicited the higher asymmetries compared with arm-pull conditions. No significant associations were found between asymmetries and velocity. The absence of such association suggests that, to a certain and unknown extent, swimming may benefit from contralateral limb asymmetry.


2021 ◽  
pp. 931-937
Author(s):  
T.A. Azeez ◽  
M.R. Andrade ◽  
J.D. La Favor

In functional arterial studies using wire myography, the determination of a vessel’s standardized normalization factor (factor k) is an essential step to ensure optimal contraction and relaxation by the arteries when stimulated with their respective vasoactive agents and to obtain reproducible results. The optimal factor k for several arteries have been determined; however, the optimal initial tension and factor k for the arteries involved in erection remains unknown. Hence, in the present study we set out to determine the optimal factor k for the internal iliac artery, proximal and distal internal pudendal artery (IPA), and dorsal penile artery. After isolating, harvesting, and mounting the arteries from male Sprague-Dawley rats on a multi wire myograph, we tested arterial responsivity to high K+-stimulation when the factor k was set at 0.7, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, and 1.2 to determine the factor k setting that results in the greatest K+-induced active force production for each vessel type. The data showed the optimal factor k is 0.90-0.95 for the dorsal penile, distal internal pudendal and internal iliac arteries while it is 0.85-0.90 for proximal internal pudendal artery. These optimal values corresponded to initial passive tension settings of 1.10±0.16 - 1.46±0.23, 1.28±0.20 - 1.69±0.34, 1.03±0.27 - 1.33±0.31, and 1.33±0.31 - 1.77±0.43 mN/mm for the dorsal penile, distal IP, proximal IP, and internal iliac arteries, respectively.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jeremy D Wong ◽  
Tyler Cluff ◽  
Arthur D Kuo

The central nervous system plans human reaching movements with stereotypically smooth kinematic trajectories and fairly consistent durations. Smoothness seems to be explained by accuracy as a primary movement objective, whereas duration seems to economize energy expenditure. But the current understanding of energy expenditure does not explain smoothness, so that two aspects of the same movement are governed by seemingly incompatible objectives. Here we show that smoothness is actually economical, because humans expend more metabolic energy for jerkier motions. The proposed mechanism is an underappreciated cost proportional to the rate of muscle force production, for calcium transport to activate muscle. We experimentally tested that energy cost in humans (N=10) performing bimanual reaches cyclically. The empirical cost was then demonstrated to predict smooth, discrete reaches, previously attributed to accuracy alone. A mechanistic, physiologically measurable, energy cost may therefore explain both smoothness and duration in terms of economy, and help resolve motor redundancy in reaching movements.


2021 ◽  
Author(s):  
Aliki Zavoriti ◽  
Aurélie Fessard ◽  
Masoud Rahmati ◽  
Peggy Del Carmine ◽  
Bénédicte Chazaud ◽  
...  

Skeletal muscle is a plastic tissue that adapts to exercise through fusion of muscle stem cells (MuSCs) with myofibers, a physiological process referred to as myonuclear accretion. However, it is still unclear whether myonuclear accretion is driven by increased mechanical loading per se , or occurs, at least in part, in response to exercise-induced muscle injury. Here, we developed a carefully monitored and individualized neuromuscular electrical stimulation (NMES) training protocol of the mouse plantar flexor muscles. Each NMES training session consisted of 80 isometric contractions at a submaximal mechanical intensity corresponding to ≈15% of maximal tetanic force to avoid muscle damage. NMES trained mice were stimulated for 2 × 3 consecutive days separated by one day of rest, for a total of 6 sessions. Experiments were conducted on C57BL/6J and BALB/c males at 10-12 weeks of age. NMES led to a robust myonuclear accretion and higher MuSC content in gastrocnemius muscle of both mouse lines, without overt signs of muscle damage/regeneration or muscle hypertrophy or force improvement. This new mouse model of myonuclear accretion relying on the main function of skeletal muscles, i.e., force production in response to electrical stimuli, will be of utmost interest to further understand the role of MuSCs in skeletal muscle adaptations.


Sign in / Sign up

Export Citation Format

Share Document