The Influence of Sagittal Plane Hip Position on Lower-Extremity Muscle Activity and Torque Output

2020 ◽  
pp. 1-9
Author(s):  
Neal R. Glaviano ◽  
David M. Bazett-Jones

Context: Hip muscle strength has previously been evaluated in various sagittal plane testing positions. Altering the testing position appears to have an influence on hip muscle torque during hip extension, abduction, and external rotation. However, it is unknown how altering the testing position influences hip muscle activity during these commonly performed assessments. Objectives: To evaluate how hip sagittal plane position influences hip muscle activation and torque output. Study Design: Cross-sectional. Setting: Laboratory. Patients or Other Participants: A total of 22 healthy females (age = 22.1 [1.4] y; mass = 63.4 [11.3] kg; height = 168.4 [6.2] cm) were recruited. Intervention: None. Main Outcome Measures: Participants completed isometric contractions with surface electromyography on the superior and inferior gluteus maximus; anterior, middle, and posterior gluteus medius; biceps femoris, semitendinosus, adductor longus, and tensor fascia latae. Extension and external rotation were tested in 0°, 45°, and 90° of hip flexion and abduction was tested in −5°, 0°, and 45° of hip flexion. Repeated-measures analysis of variances were used for statistical analysis (P ≤ .01). Results: Activation of gluteal (P < .007), semitendinosus (P = .002), and adductor longus (P = .001) muscles were lesser for extension at 90° versus less flexed positions. Adductor longus activity was greatest during 90° of hip flexion for external rotation torque testing (P < .001). Tensor fascia latae (P < .001) and gluteus maximus (P < .001) activities were greater in 45° of hip flexion. Significant differences in extension (P < .001) and abduction (P < .001) torque were found among positions. Conclusions: Position when assessing hip extension and abduction torque has an influence on both muscle activity and torque output but only muscle activity for hip external rotation torque. Clinicians should be aware of the influence of position on hip extension, abduction, and external rotation muscle testing and select a position most in line with their clinical goals.

2019 ◽  
Vol 28 (8) ◽  
pp. 854-859
Author(s):  
Osamu Yanagisawa ◽  
Kenta Wakamatsu ◽  
Hidenori Taniguchi

Context: Compared to shoulder and elbow functions, the hip functional characteristics of baseball pitchers have not been fully investigated. Therefore, little is known about the relationship between hip function and pitching performance. Objective: The purpose of this study was to evaluate the characteristics of hip flexibility and strength, focusing on their influences on the ball velocity in baseball pitchers. Design: Descriptive laboratory study. Setting: Laboratory and university baseball facility. Participants: Twenty-three college baseball pitchers. Interventions: Passive hip range of motion (ROM) and isometric hip muscle strength were bilaterally measured. The pitchers threw 20 fastballs at an official pitching distance. Main Outcome Measures: Bilateral hip ROM and strength in flexion, extension, abduction, adduction, and external and internal rotation; the maximal ball velocity. Results: The pivot side showed smaller hip external rotation ROM (P < .01), larger hip internal rotation ROM (P = .03), and greater hip adduction strength (P = .03) than the stride side. The hip extension ROM on the stride side had a negative correlation with the maximal ball velocity (r = −.58, P < .01). The maximal ball velocity (135.3 [4.1] km/h) positively correlated with the hip extension (r = .59, P < .01), flexion (r = .57, P < .01), abduction (r = .55, P < .01), and adduction (r = .55, P < .01) strength on the pivot leg, and the hip flexion (r = .53, P = .01), abduction (r = .67, P < .01), and adduction (r = .46, P = .03) strength on the stride leg. Conclusions: These findings suggest that baseball pitchers do not have marked side-to-side differences in hip flexibility and strength, and that an important fitness factor for increasing ball velocity is not the hip flexibility but the hip muscle strength of both legs.


1999 ◽  
Vol 4 (1) ◽  
pp. 6-7
Author(s):  
James J. Mangraviti

Abstract The accurate measurement of hip motion is critical when one rates impairments of this joint, makes an initial diagnosis, assesses progression over time, and evaluates treatment outcome. The hip permits all motions typical of a ball-and-socket joint. The hip sacrifices some motion but gains stability and strength. Figures 52 to 54 in AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), Fourth Edition, illustrate techniques for measuring hip flexion, loss of extension, abduction, adduction, and external and internal rotation. Figure 53 in the AMA Guides, Fourth Edition, illustrates neutral, abducted, and adducted positions of the hip and proper alignment of the goniometer arms, and Figure 52 illustrates use of a goniometer to measure flexion of the right hip. In terms of impairment rating, hip extension (at least any beyond neutral) is irrelevant, and the AMA Guides contains no figures describing its measurement. Figure 54, Measuring Internal and External Hip Rotation, demonstrates proper positioning and measurement techniques for rotary movements of this joint. The difference between measured and actual hip rotation probably is minimal and is irrelevant for impairment rating. The normal internal rotation varies from 30° to 40°, and the external rotation ranges from 40° to 60°.


2009 ◽  
Vol 18 (1) ◽  
pp. 104-117 ◽  
Author(s):  
John H. Hollman ◽  
Barbara E. Ginos ◽  
Jakub Kozuchowski ◽  
Amanda S. Vaughn ◽  
David A. Krause ◽  
...  

Context:Reduced strength and activation of hip muscles might correlate with increased weight-bearing knee valgus.Objective:To describe relationships among frontal-plane hip and knee angles, hip-muscle strength, and electromyographic (EMG) recruitment in women during a step-down.Design:Exploratory study.Setting:Laboratory.Participants:20 healthy women 20 to 30 years of age.Interventions:Frontal-plane hip and knee angles were measured. Gluteus maximus and medius recruitment were examined with surface EMG. Hip-abduction and -external-rotation strength were quantified with handheld dynamometry.Main Outcome Measurements:The authors analyzed correlation coefficients between knee and hip angles, gluteus maximus and medius EMG, and hip-abduction and -external-rotation strength.Results:Hip-adduction angles (r = .755, P = .001), gluteus maximus EMG (r = −.451, P = .026), and hip-abduction strength (r = .455, P = .022) correlated with frontal-plane projections of knee valgus.Conclusions:Gluteus maximus recruitment might have greater association with reduced knee valgus in women than does external-rotation strength during step-down tasks. Gluteus medius strength might be associated with increased knee valgus.


2012 ◽  
Vol 47 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Joseph M. McBeth ◽  
Jennifer E. Earl-Boehm ◽  
Stephen C. Cobb ◽  
Wendy E. Huddleston

Context: Lower extremity overuse injuries are associated with gluteus medius (GMed) weakness. Understanding the activation of muscles about the hip during strengthening exercises is important for rehabilitation. Objective: To compare the electromyographic activity produced by the gluteus medius (GMed), tensor fascia latae (TFL), anterior hip flexors (AHF), and gluteus maximus (GMax) during 3 hip-strengthening exercises: hip abduction (ABD), hip abduction with external rotation (ABD-ER), and clamshell (CLAM) exercises. Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: Twenty healthy runners (9 men, 11 women; age = 25.45 ± 5.80 years, height = 1.71 ± 0.07 m, mass = 64.43 ± 7.75 kg) participated. Intervention(s): A weight equal to 5% body mass was affixed to the ankle for the ABD and ABD-ER exercises, and an equivalent load was affixed for the CLAM exercise. A pressure biofeedback unit was placed beneath the trunk to provide positional feedback. Main Outcome Measure(s): Surface electromyography (root mean square normalized to maximal voluntary isometric contraction) was recorded over the GMed, TFL, AHF, and GMax. Results: Three 1-way, repeated-measures analyses of variance indicated differences for muscle activity among the ABD (F3,57 = 25.903, P&lt;.001), ABD-ER (F3,57 = 10.458, P&lt;.001), and CLAM (F3,57 = 4.640, P=.006) exercises. For the ABD exercise, the GMed (70.1 ± 29.9%), TFL (54.3 ± 19.1%), and AHF (28.2 ± 21.5%) differed in muscle activity. The GMax (25.3 ± 24.6%) was less active than the GMed and TFL but was not different from the AHF. For the ABD-ER exercise, the TFL (70.9 ± 17.2%) was more active than the AHF (54.3 ± 24.8%), GMed (53.03 ± 28.4%), and GMax (31.7 ± 24.1 %). For the CLAM exercise, the AHF (54.2 ± 25.2%) was more active than the TFL (34.4 ± 20.1%) and GMed (32.6 ± 16.9%) but was not different from the GMax (34.2 ± 24.8%). Conclusions: The ABD exercise is preferred if targeted activation of the GMed is a goal. Activation of the other muscles in the ABD-ER and CLAM exercises exceeded that of GMed, which might indicate the exercises are less appropriate when the primary goal is the GMed activation and strengthening.


2021 ◽  
Vol 2 ◽  
Author(s):  
Caroline Prince ◽  
Jean-Benoît Morin ◽  
Jurdan Mendiguchia ◽  
Johan Lahti ◽  
Kenny Guex ◽  
...  

To train hamstring muscle specifically to sprint, strengthening programs should target exercises associated with horizontal force production and high levels of hamstring activity. Therefore, the objectives of this study were to analyze the correlation between force production capacities during sprinting and hamstring strengthening exercises, and to compare hamstring muscle activity during sprinting and these exercises. Fourteen track and field regional level athletes performed two maximal 50-m sprints and six strengthening exercises: Nordic hamstring exercises without and with hip flexion, Upright-hip-extension in isometric and concentric modalities, Standing kick, and Slide-leg-bridge. The sprinting horizontal force production capacity at low (F0) and high (V0) speeds was computed from running velocity data. Hamstring muscle performances were assessed directly or indirectly during isolated exercises. Hamstring muscle electromyographic activity was recorded during all tasks. Our results demonstrate substantially large to very large correlations between V0 and performances in the Upright-hip-extension in isometric (rs = 0.56; p = 0.040), Nordic hamstring exercise without hip flexion (rs = 0.66; p = 0.012) and with 90° hip flexion (rs = 0.73; p = 0.003), and between F0 and Upright-hip-extension in isometric (rs = 0.60; p = 0.028) and the Nordic hamstring exercise without hip flexion (rs = 0.59; p = 0.030). However, none of the test exercises activated hamstring muscles more than an average of 60% of the maximal activation during top-speed sprinting. In conclusion, training programs aiming to be sprint-specific in terms of horizontal force production could include exercises such as the Upright-hip-extension and the Nordic hamstring exercise, in addition to maximal sprinting activity, which is the only exercise leading to high levels of hamstring muscle activity.


2015 ◽  
Vol 47 ◽  
pp. 211
Author(s):  
Tyler N. Tylinski ◽  
Jay Sparks ◽  
Jelena Krstic ◽  
Abigail Stromquist ◽  
David M. Bazett-Jones

2009 ◽  
Vol 101 (4) ◽  
pp. 2062-2076 ◽  
Author(s):  
Keith E. Gordon ◽  
Ming Wu ◽  
Jennifer H. Kahn ◽  
Yasin Y. Dhaher ◽  
Brian D. Schmit

The purpose of this research was to examine the role of isolated ankle-foot load in regulating locomotor patterns in humans with and without spinal cord injury (SCI). We used a powered ankle-foot orthosis to unilaterally load the ankle and foot during robotically assisted airstepping. The load perturbation consisted of an applied dorsiflexion torque designed to stimulate physiological load sensors originating from the ankle plantar flexor muscles and pressure receptors on the sole of the foot. We hypothesized that 1) the response to load would be phase specific with enhanced ipsilateral extensor muscle activity and joint torque occurring when unilateral ankle-foot load was provided during the stance phase of walking and 2) that the phasing of subject produced hip moments would be modulated by varying the timing of the applied ankle-foot load within the gait cycle. As expected, both SCI and nondisabled subjects demonstrated a significant increase ( P < 0.05) in peak hip extension moments (142 and 43% increase, respectively) when given ankle-foot load during the stance phase compared with no ankle-foot load. In SCI subjects, this enhanced hip extension response was accompanied by significant increases ( P < 0.05) in stance phase gluteus maximus activity (27% increase). In addition, when ankle-foot load was applied either 200 ms earlier or later within the gait cycle, SCI subjects demonstrated significant phase shifts (∼100 ms) in hip moment profile ( P < 0.05; i.e., the onset of hip extension moments occurred earlier when ankle-foot load was applied earlier). This study provides new insights into how individuals with spinal cord injury use sensory feedback from ankle-foot load afferents to regulate hip joint moments and muscle activity during gait.


2009 ◽  
Vol 12 (02) ◽  
pp. 113-125
Author(s):  
Marie A. Johanson ◽  
Bruce H. Greenfield ◽  
Brenda L. Greene ◽  
Thomas A. Abelew

Study design: Case study. Background: To date, there is little research that has examined the association of impairments at the hip with cumulative trauma syndromes of the hip. The purposes of this case report are to: (1) describe clinical outcomes for a patient with non-specific bilateral musculoskeletal hip pain associated with recreational walking, (2) explore the relationship between this patient's impairments and her cumulative trauma syndrome at the hip, and (3) integrate biomechanical analysis with this patient's clinical diagnosis. Case description: The patient was a 28-year-old female research assistant who reported anterior bilateral hip pain during recreational walking. After examination, the physical therapist diagnosed primary impairments of hip pain, limited hip flexion range of motion (ROM), and weakness of hip musculature, resulting in her ambulation limitations. Intervention consisted of a home exercise program (HEP) designed to strengthen the iliopsoas, gluteus maximus, and gluteus medius (specifically, the posterior portion), increase extensibility of the IT Band and medial hamstrings, and promote posterior glide of the proximal femur. The patient's HEP was the only intervention she received. There were follow-up telephone conversations, but no clinical re-examination for ten weeks. The patient performed the HEP a total of 41 days over the ten week period. Biomechanical gait analysis was performed pre- and post-intervention. Outcomes: Following intervention, the patient was pain-free during recreational walking, and passive hip flexion ROM and manual muscle testing (MMT) grades of hip musculature improved. Global score on the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) improved ten points. Motion analysis, force plate analysis, and electromyography (EMG) showed that maximum hip extension decreased, maximum hip flexion increased, maximum ground reaction force increased, activation of the gluteus maximus increased, while activation of the gluteus medius and tensor fascia latae (TFL) decreased following the intervention. Discussion: This patient's changes in muscle activity following a HEP appear largely consistent with improved symptoms based on theoretical descriptions of a common muscle imbalance (shortened and overactive TFL and weakness of the gluteus maximus and posterior portion of the gluteus medius), thought to contribute to increased femoral medial rotation.


2017 ◽  
Vol 26 (4) ◽  
pp. 216-222 ◽  
Author(s):  
In-cheol Jeon ◽  
Oh-yun Kwon ◽  
Jong-hyuck Weon ◽  
Ui-jae Hwang ◽  
Sung-hoon Jung

Context:Prone hip extension has been recommended for strengthening the back and hip muscles. Previous studies have investigated prone hip extension conducted with subjects on the floor in the prone position. However, no study has compared 3 different table hip-extension (THE) positions in terms of the activities of the back- and hip-joint muscles with lumbopelvic motion.Objective:To identify more effective exercises for strengthening the gluteus maximus (GM) by comparing 3 different exercises (THE alone, THE with the abdominal drawing-in maneuver [THEA], and THEA with chair support under the knee [THEAC]) based on electromyographic muscle activity and pelvic compensation.Design:Repeated-measure within-subject intervention.Setting:University research laboratory.Participants:16 healthy men.Main Outcome Measures:Surface electromyography (EMG) was used to obtain data on the GM, erector spinae (ES), multifidus, biceps femoris (BF), and semitendinosus (ST). Pelvic compensation was monitored using an electromagnetic motion-tracking device. Exertion during each exercise was recorded. Any significant difference in electromyographic muscle activity and pelvic motion among the 3 conditions (THE vs THEA vs THEAC) was assessed using a 1-way repeated-measures analysis of variance (ANOVA) with Bonferroni post hoc test.Results:The muscle activities recorded by EMG differed significantly among the 3 exercises (P < .01). GM activity was increased significantly during THEAC (P < .01). There was a significant difference in lumbopelvic kinematics in terms of anterior tilting (F = 19.49, P < .01) and rotation (F= 27.38, P < .01) among the 3 exercises.Conclusions:The THEAC exercise was the most effective for strengthening the GM without overactivity of the ES, BF, and ST muscles and lumbopelvic compensation compared with THE and THEA.


Sign in / Sign up

Export Citation Format

Share Document