2-Orthogonal polynomials and Darboux transformations. Applications to the discrete Hahn-classical case

Author(s):  
F. Marcellán ◽  
H. Chaggara ◽  
N. Ayadi
2020 ◽  
Vol 382 ◽  
pp. 125337 ◽  
Author(s):  
D. Barrios Rolanía ◽  
J.C. García-Ardila ◽  
D. Manrique

Filomat ◽  
2018 ◽  
Vol 32 (20) ◽  
pp. 6953-6977 ◽  
Author(s):  
Cleonice Bracciali ◽  
Francisco Marcellán ◽  
Serhan Varma

A result of P?lya states that every sequence of quadrature formulas Qn(f) with n nodes and positive Cotes numbers converges to the integral I(f) of a continuous function f provided Qn(f) = I(f) for a space of algebraic polynomials of certain degree that depends on n. The classical case when the algebraic degree of precision is the highest possible is well-known and the quadrature formulas are the Gaussian ones whose nodes coincide with the zeros of the corresponding orthogonal polynomials and the Cotes (Christoffel) numbers are expressed in terms of the so-called kernel polynomials. In many cases it is reasonable to relax the requirement for the highest possible degree of precision in order to gain the possibility to either approximate integrals of more specific continuous functions that contain a polynomial factor or to include additional fixed nodes. The construction of such quadrature processes is related to quasi-orthogonal polynomials. Given a sequence {Pn}n?0 of monic orthogonal polynomials and a fixed integer k, we establish necessary and sufficient conditions so that the quasi-orthogonal polynomials {Qn}n?0 defined by Qn(x) = Pn(x) + ?k-1,i=1 bi,nPn-i(x), n ? 0, with bi,n ? R, and bk-1,n ? 0 for n ? k-1, also constitute a sequence of orthogonal polynomials. Therefore we solve the inverse problem for linearly related orthogonal polynomials. The characterization turns out to be equivalent to some nice recurrence formulas for the coefficients bi,n. We employ these results to establish explicit relations between various types of quadrature rules from the above relations. A number of illustrative examples are provided.


Author(s):  
María Ángeles García-Ferrero ◽  
◽  
David Gómez-Ullate ◽  
Robert Milson ◽  
◽  
...  

Exceptional orthogonal polynomials are families of orthogonal polynomials that arise as solutions of Sturm-Liouville eigenvalue problems. They generalize the classical families of Hermite, Laguerre, and Jacobi polynomials by allowing for polynomial sequences that miss a finite number of ''exceptional'' degrees. In this paper we introduce a new construction of multi-parameter exceptional Legendre polynomials by considering the isospectral deformation of the classical Legendre operator. Using confluent Darboux transformations and a technique from inverse scattering theory, we obtain a fully explicit description of the operators and polynomials in question. The main novelty of the paper is the novel construction that allows for exceptional polynomial families with an arbitrary number of real parameters.


Sign in / Sign up

Export Citation Format

Share Document