Effect of Wall Heat Flux Distribution on Laminar Mixed Convection in the Entrance Region of a Horizontal Rectangular Duct

1988 ◽  
Vol 13 (4) ◽  
pp. 427-450 ◽  
Author(s):  
H. V. Mahaney ◽  
F. P. Incropera ◽  
S. Ramadhyani
1983 ◽  
Vol 105 (2) ◽  
pp. 157-162 ◽  
Author(s):  
S. M. Morcos ◽  
M. M. M. Abou-Ellail

A numerical procedure is presented for the entrance region of an inclined multirectangular-channel solar collector with significant buoyancy effects. The upper wall heat flux is taken to be uniform, while the lower wall is assumed to be insulated. The heat flux distribution on the side wall of the rectangular channel is obtained by coupling a heat-conduction numerical procedure in the metallic region surrounding the channel to the main numerical procedure which solves the hydrodynamic and energy equations of the flow inside the channel. Numerical results are presented for water flowing in a multirectangular-channel solar collector with an aspect ratio AR = 4 inclined at an angle α = 30 deg to the horizontal. The resulting variable heat flux distribution on the side wall enhances the intensity of the secondary flow. The effects of the nonuniform heat flux distribution and the spacing between the rectangular channels on the variation of Nusselt number in the entrance region are presented for different values of Rayleigh number. At a value of Ra = 5 × 105, Nusselt number is more than 300 percent above the constant property prediction.


2006 ◽  
Vol 128 (8) ◽  
pp. 811-818 ◽  
Author(s):  
Jinny Rhee ◽  
Robert J. Moffat

Abstract The continuous, one-dimensional kernel function in a rectangular duct subject to forced convection with air was experimentally estimated using liquid crystal thermography techniques. Analytical relationships between the kernel function for internal flow and the temperature distribution resulting from a known heat flux distribution were manipulated to accomplish this objective. The kernel function in the hydrodynamically fully developed region was found to be proportional to the streamwise temperature gradient resulting from a constant heat flux surface. In the hydrodynamic entry region of the rectangular duct, a model for the kernel function was proposed and used in its experimental determination. The kernel functions obtained by the present work were shown to be capable of predicting the highly nonuniform surface temperature rise above the inlet temperature resulting from an arbitrary heat flux distribution to within the experimental uncertainty. This is better than the prediction obtained using the analytically derived kernel function for turbulent flow between parallel plates, and the prediction obtained using the conventional heat transfer coefficient for constant heat flux boundary conditions. The latter prediction fails to capture both the quantitative and qualitative nature of the problem. The results of this work are relevant to applications involving the thermal management of nonuniform temperature surfaces subject to internal convection with air, such as board-level electronics cooling. Reynolds numbers in the turbulent and transition range were examined.


Sign in / Sign up

Export Citation Format

Share Document