heat flux distribution
Recently Published Documents


TOTAL DOCUMENTS

241
(FIVE YEARS 40)

H-INDEX

20
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Shuyu Dai ◽  
Defeng Kong ◽  
Vincent Chan ◽  
Liang Wang ◽  
Yuhe Feng ◽  
...  

Abstract The numerical modelling of the heat flux distribution with neon impurity seeding on CFETR has been performed by the three-dimensional (3D) edge transport code EMC3-EIRENE. The maximum heat flux on divertor targets is about 18 MW m-2 without impurity seeding under the input power of 200 MW entering into the scrape-off layer. In order to mitigate the heat loads below 10 MW m-2, neon impurity seeded at different poloidal positions has been investigated to understand the properties of impurity concentration and heat load distributions for a single toroidal injection location. The majority of the studied neon injections gives rise to a toroidally asymmetric profile of heat load deposition on the in- or out-board divertor targets. The heat loads cannot be reduced below 10 MW m-2 along the whole torus for a single toroidal injection location. In order to achieve the heat load mitigation (<10 MW m-2) along the entire torus, modelling of sole and simultaneous multi-toroidal neon injections near the in- and out-board strike points has been stimulated, which indicates that the simultaneous multi-toroidal neon injections show a better heat flux mitigation on both in- and out-board divertor targets. The maximum heat flux can be reduced below 7 MWm-2 on divertor targets for the studied scenarios of the simultaneous multi-toroidal neon injections.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8543
Author(s):  
Xian-long Meng ◽  
Cun-liang Liu ◽  
Pu Zhang

With the increase of combustion temperatures, the thermal radiation effect for hot components in the new generation of aero-engines has become a key factor in the combustion process, cooling structure design, and thermal protection. A radiation loading system can be used as an external heat source to simulate the real thermal environment of hot components in aero-engines. Total receiving power, as well as 3-D heat flux distribution, should better coincide with real conditions. With the aid of freeform optics and the feedback optimization method, the current study develops a concentrating-type radiation heating system fit for the leading-edge surface of a C3X turbine vane. A xenon lamp combined with a freeform reflector was optimized for controllable heat flux. A design method in the area of illumination engineering was innovatively extended for the current model. Considering the effect of polar angular radiative flux distribution of a xenon lamp, a Monte Carlo ray tracing (MCRT) method was adopted to evaluate the optical performance. Feedback modifications based on Bayesian theory were adopted to obtain the optimal shape of the FFS for target heat flux. The current study seeks a feasible way to generate 3-D heat flux distribution for complex curved surfaces, such as turbine vane surfaces, and helps to simulate the real thermal environment of hot components in aero-engines.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6255
Author(s):  
Haisheng Zhen ◽  
Baodong Du ◽  
Xiaoyu Liu ◽  
Zihao Liu ◽  
Zhilong Wei

Experiments were carried out to investigate the heat transfer and pollutants emission characteristics of a slot LPG premixed flame array impinging normally onto a flat plate. The effects of jet-to-jet spacing (S/de), nozzle-to-plate distance (H/de), and jet Reynolds number (Re) on the heat flux and emission index of CO, CO2, and NOx/NO2 were examined. In addition, the thermal and emission characteristics between slot jets and circular jets were compared under identical experimental conditions. The results show that the more uniform heat flux distribution and higher total heat flux can be obtained at moderate jet-to-jet spacing, large jet-to-plate distance, and higher Reynolds number. EICO emissions can be influenced by the combined effects of jet-to-jet spacing, jet-to-plate distance, and higher Reynolds number. For the sake of the better combustion efficiency and lower EICO emission, the moderate jet-to-jet spacing (S/de = 2.5), larger jet-to-plate distance (H/de = 4), and relatively higher Reynolds number (Re = 1500) are preferred for the slot jet flame array. Furthermore, it is found that there exists a trade-off between the EICO and EINOx of the slot LPG flame array. Compared with multiple circular flame jets, multiple slot flames jets have the higher area-averaged heat flux due to the larger heating area and more uniform heat flux distribution, while the higher EICO emission and lower EINOx emission are due to the greater jet interaction suppressing the air entrainment. Thus, it is known that the slot flame array has a better heating performance but relatively higher pollutant emissions than the circular flame array.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chuanmao Zheng ◽  
Hongxin Yao ◽  
Xiyao Wang ◽  
Hong Ye

AbstractQuartz lamp heaters and hypersonic wind tunnel are currently applied in thermal assessment of heat resistant materials and surface of aircraft. However, it is difficult to achieve precise heat flux distribution by quartz lamp heaters, while enormous energy is required by a large scale hypersonic wind tunnel. Electron beam can be focused into a beam spot of millimeter scale by an electromagnetic lens and electron-magnetically deflected to achieve a rapid scanning over a workpiece. Moreover, it is of high energy utilization efficiency when applying an electron beam to heat a metal workpiece. Therefore, we propose to apply an electron beam with a variable speed to establish a novel method to realize various non-uniform heat flux boundary conditions. Besides, an electron beam thermal assessment equipment is devised. To analyze the feasibility of this method, an approach to calculate the heat flux distribution formed by an electron beam with variable-speed scanning is constructed with beam power, diameter of the beam spot and dwell duration of the electron beam at various locations as the key parameters. To realize a desired non-uniform heat flux distribution of the maximum gradient of 1.1 MW/m3, a variable-speed scanning strategy is constructed on basis of the conservation of energy. Compared with the desired heat flux, the maximum deviation of the scanned heat flux is 4.5% and the deviation in the main thermal assessment area is less than 3%. To verify the method, taking the time-average scanned heat flux as the boundary condition, a heat transfer model is constructed and temperature results are calculated. The experiment of variable-speed scanning of an electron beam according to the scanning strategy has been carried out. The measured temperatures are in good agreement with the predicted results at various locations. Temperature fluctuation during the scanning process is analyzed, and it is found to be proportional to the scanned heat flux divided by volumetric heat capacity, which is applicable for different materials up to 3.35 MW/m2. This study provides a novel and effective method for precise realization of various non-uniform heat flux boundary conditions.


Author(s):  
Konstantinos G. Stokos ◽  
Evgeny V. Votyakov ◽  
Costas N. Papanicolas

In this paper the concept of a new method for the estimation of the heat flux distribution and the total power in CSP applications is presented. This method requires appropriate analysis of the temperature evolution on a target, or directly on a receiver. A 3-D thermal conduction model with boundary conditions to take into account the convection and radiation losses has been developed. A parametric analysis was performed and we checked how the physical parameters affect the applicability of the method. Having proven numerically the potential of this method, it was experimentally implemented in the central tower CSP plant of The Cyprus Institute at PROTEAS facilities successfully. The experience gained from the numerical and experimental application of this method is discussed.


Sign in / Sign up

Export Citation Format

Share Document