constant wall heat flux
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 12)

H-INDEX

24
(FIVE YEARS 2)

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Fehaid Salem Alshammari

This research aims to study the characteristics of thermal transport and analyse the entropy generation of electroosmotic flow of power-law fluids in a microtriangular prism in the presence of pressure gradient. Considering a fully developed flow subject to constant wall heat flux, the nonlinear electric potential, momentum, and linear heat transfer equations are solved numerically by developing an iterative finite difference method with a nonuniform grid. The thermal efficiency of the model is explored under the light of the second law of thermodynamics. Effect/impact of governing physical parameters on velocity, temperature, Nusselt number, and entropy distributions is studied, and the results are demonstrated graphically; we found that the Nusselt number decreases with the increase of power-law index, and average entropy generation increases with power-law index. We believe that the obtained result in the present study shall be useful for design of energy efficient microsystems which utilize the dual electrokinetic and centrifugal pumping effects.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4554
Author(s):  
Mohamed Iqbal Shajahan ◽  
Jee Joe Michael ◽  
M. Arulprakasajothi ◽  
Sivan Suresh ◽  
Emad Abouel Nasr ◽  
...  

There is a significant enhancement of the heat transfer rate with the usage of nanofluid. This article describes a study of the combination of using nanofluid with inserts, which has proved itself in attaining higher benefits in a heat exchanger, such as the radiator in automobiles, industries, etc. Nanofluids are emerging as alternative fluids for heat transfer applications due to enhanced thermal properties. In this paper, the thermal hydraulic performance of ZrO2, awater-based nanofluid with various volume concentrations of 0.1%, 0.25%, and 0.5%, and staggered conical strip inserts with three different twist ratios of 2.5, 3.5, and 4.5 in forward and backward flow patterns were experimentally tested under a fully developed laminar flow regime of 0–50 lphthrough a horizontal test pipe section with a length of 1 m with a constant wall heat flux of 280 W as the input boundary condition. The temperatures at equidistant position and across the test section were measured using K-type thermocouples. The pressure drop across the test section was measured using a U-tube manometer. The observed results showed that the use of staggered conical strip inserts improved the heat transfer rates up to that of 130.5%, 102.7%, and 64.52% in the forward arrangement, and similarly 145.03%, 116.57%, and 80.92% in the backward arrangement with the twist ratios of 2.5, 3.5, and 4.5 at the 0.5% volume concentration of ZrO2 nanofluid. It was also seen that the improvement in heat transfer was comparatively lower for the other two volume concentrations considered in this study. The twist ratio generates more swirl flow, disrupting the thermal hydraulic boundary layer. Nanofluids with a higher volume concentration lead to higher heat transfer due to higher effective thermal conductivity of the prepared nanofluid. The thermal performance factor (TPF) with conical strip inserts at all volume concentrations of nanofluids was perceived as greater than 1. A sizable thermal performance ratio of 1.62 was obtained for the backward-arranged conical strip insert with 2.5 as the twist ratio and a volume concentration of 0.5% ZrO2/deionized water nanofluid. Correlations were developed for the Nusselt number and friction factor based on the obtained experimental data with the help of regression analysis.


Author(s):  
Ted D. Bennett

Abstract Description of the laminar thermal entry problem in annular tubes has historically been limited to a few geometric cases that require piecing together classical Graetz series and Lévêque series solutions to span all values of the Graetz number. The current work uses a recently developed generalized correlation to describe the full range of Graetz numbers for any annular tube geometry. However, the correlation requires fully developed Nusselt number values that have only been accurately reported in tabular and graphical forms. Exact analytic solutions for the constant wall heat flux condition are developed in this work, and simplified correlations are proposed for all wall conditions that reproduce exact Nusselt number solutions to within ± 0.4%. Using these results, a modified version of the generalized Graetz problem correlation is developed to reproduce the most published Nusselt numbers for the thermal entry problem in an annular tube to be within ± 5%.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Milad Kelidari ◽  
Ali Jabari Moghadam ◽  
Houman Moradi Dalvand

Abstract The effects of nanoferrofluids on the overall performance of curved tubes (with various radii of curvature) are experimentally investigated under the influence of constant and alternating magnetic fields. The working fluids are distilled water and a ferrofluid (Fe3O4/water) with 0.2% and 0.4% volume concentrations. The experiments are performed under a constant wall heat flux (≈12,700 W/m2) using a chrome–nickel electric heater element insulated by refractory fabrics. The mass flowrate is varied from 0.2 to 0.7 kg/min. There are three key parameters, namely, type of the magnetic field, volume of concentration of nanoparticles, and radius of curvature of the pipes that affect the hydrodynamic and thermal characteristics of the system, but the latter is comparatively the dominant factor. If the Reynolds number is 930 in the pipe of 0.2-m diameter of curvature, and also a 50-Hz alternating magnetic field is applied to the curved pipe, the results reveal that using a 0.4% ferrofluid, Nusselt number is improved by 32% compared to that of the distilled water. Nevertheless, due to the undesirable influence of pressure gradient, the best overall effectiveness of 1.12 is attained in the circumstances but in the pipe of 0.4-m diameter of curvature.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Ted D. Bennett

The historical approach to averaging the convection coefficient in tubes of constant wall heat flux leads to quantitative errors in short tubes as high as 12.5% for convection into fully developed flows and 33.3% for convection into hydrodynamically developing flows. This mistake can be found in teaching texts and monographs on heat transfer, as well as in major handbooks. Using the correctly defined relationship between local and average convection coefficients, eight new correlations are presented for fully developed and developing flows in round tubes and between parallel plates for the constant wall heat flux condition. These new correlations are within 2% of exact solutions for fully developed flows and within 6% of first principle calculations for hydrodynamically developing flows.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
F. Talay Akyildiz ◽  
Dennis A. Siginer

Forced convection heat transfer in fully developed laminar flow in transversely corrugated tubes is investigated for nonuniform but constant wall heat flux as well as for constant wall temperature. Epitrochoid conformal mapping is used to map the flow domain onto the unit circle in the computational domain. The governing equations are solved in the computational domain analytically. An exact analytical solution for the temperature field is derived together with closed form expressions for bulk temperature and Nusselt number for the case of the constant heat flux at the wall. A variable coefficient Helmholtz eigenvalue problem governs the case of the constant wall temperature. A novel semi-analytical solution based on the spectral Galerkin method is introduced to solve the Helmholtz equation. The solution in both constant wall heat flux and constant wall temperature case is shown to collapse onto the well-known results for the circular straight tube for zero waviness.


Sign in / Sign up

Export Citation Format

Share Document