A PARALLEL ADI ALGORITHM FOR HIGH-ORDER FINITE-DIFFERENCE SOLUTION OF THE UNSTEADY HEAT CONDUCTION EQUATION, AND ITS IMPLEMENTATION ON THE CM-5

1993 ◽  
Vol 24 (2) ◽  
pp. 143-159 ◽  
Author(s):  
Mingyu Wang ◽  
S. P. Vanka
2019 ◽  
Vol 969 ◽  
pp. 478-483 ◽  
Author(s):  
Siddhartha Kosti ◽  
Jitender Kundu

Use of nanocomposites is increasing rapidly due to their enhanced thermal and structural properties. In the present work, the numerical modelling of nanocomposites is conducted with the help of the (GA) genetic algorithm and (FD) finite difference techniques to find out a set of nanocomposites with best thermal and structural properties. The genetic algorithm is utilized to find out the best set of nanocomposites on the basis of thermal and structural properties while the finite difference technique is utilized to solve the heat conduction equation. Different nanocomposites considered in the present work are Al-B4C, Al-SiC and Al-Al2O3. The weight percentage of these nanocomposites is varied to see its effect on the nanocomposites properties. In the end, the solidification curve for all the nanocomposites is plotted and analysed. Result reveals that GA helps in identifying the best set of nanocomposites while FD technique helps in predicting the solidification curve accurately. Increment in the wt. % of nanocomposites makes the solidification curve steeper.


2017 ◽  
Vol 38 (2) ◽  
pp. 81-100 ◽  
Author(s):  
Magda Joachimiak ◽  
Michał Ciałkowski

AbstractDirect and inverse problems for unsteady heat conduction equation for a cylinder were solved in this paper. Changes of heat conduction coefficient and specific heat depending on the temperature were taken into consideration. To solve the non-linear problem, the Kirchhoff’s substitution was applied. Solution was written as a linear combination of Chebyshev polynomials. Sensitivity of the solution to the inverse problem with respect to the error in temperature measurement and thermocouple installation error was analysed. Temperature distribution on the boundary of the cylinder, being the numerical example presented in the paper, is similar to that obtained during heating in the nitrification process.


Sign in / Sign up

Export Citation Format

Share Document