nitrification process
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 56)

H-INDEX

22
(FIVE YEARS 4)

Author(s):  
Yifan Li ◽  
Jinzhu Wu ◽  
Yongjie Liu ◽  
Feiyong Chen ◽  
Jie Guan ◽  
...  

Abstract Sludge retention time (SRT) regulation is one of the essential management techniques for refined control of the main-sidestream treatment process under the low ammonia density. It is indispensable to understand the effect of SRTs changes on the Nitrifier kinetics to obtain the functional separation of the Nitrifier and the refined control of the nitrification process. In this study, Nitrifier was cultured with conditions of 35 ± 0.5 °C, pH 7.5 ± 0.2, DO 5.0 ± 0.5 mg-O/L, and SRTs was controlled for 40 d, 20 d, 10 d, and 5 d. The net growth rate (), decay rate (), specific growth rate (), the yield of the Nitrifier (), temperature parameter (), and inhibition coefficient () have been measured and extended with the SRT decreases. Instead, the half-saturation coefficient () decreased. In addition, the limited value of pH inhibition occurs (), and the pH of keeping 5% maximum reaction rate () was in a relatively stable state. The trade of kinetics may be induced by the species structure of Nitrifier changed. The Nitrosomonas proportion was increased, and the Nitrospira used to be contrary with the SRT decreasing. It is a match for the functional separation of Nitrifier when SRTs was 20 d at ambient temperature under the low ammonia density. The kinetics of ammonia-oxidizing organism (AOO) and nitrite-oxidizing organism (NOO) in Nitrifier under different SRT conditions should be measured respectively to the refined control of the partial nitrification process in the future study. HIGHLIGHT The Nitrifier typical kinetics used to be affected notably by way of SRTs changes. The species structure of the Nitrifier was recognized beneath distinctive SRTs. The change of Nitrifier kinetics with SRTs used to be estimated by the species structure changes.


2021 ◽  
pp. 117774
Author(s):  
Dongdan Yuan ◽  
Lei Zheng ◽  
Qiuyang Tan ◽  
Xue Wang ◽  
Yuzi Xing ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5329
Author(s):  
Iwona Beata Paśmionka ◽  
Karol Bulski ◽  
Piotr Herbut ◽  
Elżbieta Boligłowa ◽  
Frederico Márcio C. Vieira ◽  
...  

The aim of the conducted research was to assess the effectiveness of the nitrification process, at different concentrations of ammonium nitrogen, in biologically treated wastewater in one of the largest municipal and industrial wastewater treatment plants in Poland. The studies also attempted to acclimate nitrifying bacteria to the limited concentration of ammonium nitrogen and determined the efficiency of nitrification under the influence of acclimated activated sludge in the biological wastewater treatment system. The obtained results indicate that the concentration of ammonium nitrogen above 60.00 mg·dm−3 inhibits nitrification, even after increasing the biomass of nitrifiers. The increase in the efficiency of the nitrification process in the tested system can be obtained by using the activated sludge inoculated with nitrifiers. For this purpose, nitrifiers should be preacclimated, at least for a period of time, allowing them to colonize the activated sludge. The acclimated activated sludge allows reducing the amount of ammonium nitrogen in treated sewage by approx. 35.0%. The process of stable nitrification in the biological treatment system was observed nine days after introducing the acclimated activated sludge into the aeration chamber.


2021 ◽  
Vol 43 (6) ◽  
pp. 443-452
Author(s):  
Taewook Kim ◽  
Sunjoo Cho ◽  
Sung-Hyun Kwon ◽  
Daechul Cho

Objectives : Nitrogen removal processes are very important in terms of water conservation. Among them, the MLE process has been difficult to optimize because it has many variations and required experiences in operation.Methods : In this work, we quantitatively analyzed the nitrification of the MLE process using the STOAT simulation program. In particular, we attempted to improve nitrification rate even at lower water temperatures.Results and Discussion : As a result, more than 93% ammonia was nitrificated when the water temperature was above 20℃, and a lower reduction rate of ammonia was observed when the temperature was below 15℃. Simulations applying three process variables (MLSS, DO concentration, and RAS) were carried out once or several times to increase nitrogen removal efficiency at 10℃, and the most efficient variable was ‘RAS increase’(55% reduction of ammonia).Conclusions : For more efficient nitrification rate, simultaneous increases in RAS and DO were required. In this case, the ammonia concentration in the effluent dropped by 61.4% and it was desirable to increase the MLSS return volume for T-N concentration reduction.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Rita Alex ◽  
Aldo Kitalika ◽  
Emmanuel Mogusu ◽  
Karoli Njau

Nitrate isotopic values are often used as a tool to identify sources of nitrate in order to effectively manage ground water quality. In this study, the concentrations of NO3−, NO2−, and NH4+ from 50 boreholes and shallow wells in the Singida and Manyoni Districts were analyzed during the dry and wet seasons, followed by identification of nitrate sources using the hydrochemical method (NO3−/Cl−) and stable isotope (δ15N and δ18O) techniques. Results showed that NO2− and NH4+ concentrations were very low in both seasons due to the nitrification process. The concentrations of NO3− ranged from 2.4 ppm to 929.6 ppm with mean values of 118.5   ppm ± 118.5   ppm , during the dry season and from 2.4 ppm to 1620.0 ppm with mean values of 171.6   ppm ± 312.3   ppm , during the wet season. The higher NO3− contamination observed in the wet season could be due to rainfall which accelerated the surface runoff that collects different materials from various settings into the ground water sources. Nitrate source identification through hydrochemical technique revealed that most nitrates originated from sewage effluents and/or organic wastes such as manure. Likewise, the mean values of δ15N-NO3− ( + 20.90 ‰ ± 5.17 ‰ and + 18.30 ‰ ± 6.33 ‰ ) and the mean values of δ18O-NO3−( + 13.86 ‰ ± 3.18 ‰ and + 13.69 ‰ ± 3.97 ‰ ) suggest that 80% of boreholes and 52% of shallow wells were dominated with nitrate from sewage effluents and/or manure as most ground water sources were situated in densely populated areas with congested and poorly constructed onsite sanitation facilities such as pit latrines and manure. Therefore, to reduce nitrate pollution in the study area, a central sewer must be constructed to treat the discharged wastes. Also, groundwater harvesting should consider the proper principles for groundwater harvesting recommended by the respective authority to minimize chances of contamination and hence prevention of health risk.


Sign in / Sign up

Export Citation Format

Share Document