Behavioral stereotypy and some ecological consequences of entrance-shaft placement of the domichnium Sanctum laurentiensis in Ordovician trepostomate Bryozoa

Ichnos ◽  
2020 ◽  
Vol 27 (2) ◽  
pp. 221-236
Author(s):  
J. Mark Erickson
2016 ◽  
Author(s):  
Matthew G. Powell ◽  
◽  
Ian-Michael Taylor-Benjamin

Author(s):  
Carl N. Keiser ◽  
James L.L. Lichtenstein ◽  
Colin M. Wright ◽  
Gregory T. Chism ◽  
Jonathan N. Pruitt

The field of animal behavior has experienced a surge of studies focusing on functional differences among individuals in their behavioral tendencies (‘animal personalities’) and the relationships between different axes of behavioral variation (‘behavioral syndromes’). Many important developments in this field have arisen through research using insects and other terrestrial arthropods, in part, because they present the opportunity to test hypotheses not accessible in other taxa. This chapter reviews how studies on insects and spiders have advanced the study of animal personalities by describing the mechanisms underlying the emergence of individual variation and their ecological consequences. Furthermore, studies accounting for animal personalities can expand our understanding of phenomena in insect science like metamorphosis, eusociality, and applied insect behavior. In addition, this chapter serves to highlight some of the most exciting issues at the forefront of our field and to inspire entomologists and behaviorists alike to seek the answers to these questions.


BioScience ◽  
2001 ◽  
Vol 51 (3) ◽  
pp. 209 ◽  
Author(s):  
JUDITH S. WEIS ◽  
GRAEME SMITH ◽  
TONG ZHOU ◽  
CELINE SANTIAGO-BASS ◽  
PEDDRICK WEIS

2021 ◽  
pp. 1-14
Author(s):  
Chaouki Khalfi ◽  
Riadh Ahmadi

Summary This study consists of an assessment of the ecological accident implicating the Continental Intercalaire-11 (CI-11) water well located in Jemna oasis, southern Tunisia. The CI-11 ecological accident manifested in 2014 with a local increase of the complex terminal (CT) shallow water table salinity and temperature. Then, this phenomenon started to spread over the region of Jemna, progressively implicating farther wells. The first investigation task consisted of logging the CI-11 well. The results revealed an impairment of the casing and cement of a huge part of the 9⅝ in. production casing. Historical production records show that the problems seem to have started in 1996 when a sudden production loss rate occurred. These deficiencies led to the CI mass-water flowing behind the casing from the CI to the CT aquifers. This ecological accident is technically called internal blowout, where water flows from the overpressurized CI groundwater to the shallower CT groundwater. Indeed, the upward CI hot-water flow dissolved salts from the encountered evaporite-rich formations of the Lower Senonian series, which complicated the ecological consequences of the accident. From the first signs of serious water degradation in 2014 through the end of 2018, several attempts have been made to regain control of annular upward water flow. However, the final CT groundwater parameters indicate that the problem is not properly fixed and communication between the two involved aquifers still persists. This accident is similar to the OKN-32 case that occurred in the Berkaoui oil field, southern Algeria, in 1986, and included the same CI and CT aquifers. Furthermore, many witnesses claim that other accidental communications are probably occurring in numerous deep-drilled wells in this region. Concludingly, Jemna CI-11, Berkaoui OKN-32, and probably many other similar accident cases could be developing regional ecological disasters by massive water resource losses. The actual situation is far from being under control and the water contamination risk remains very high. In both accidents, the cement bond failure and the choice of the casing point are the main causes of the internal blowout. Therefore, we recommend (1) a regional investigation and risk assessment plan that might offer better tools to predict and detect earlier wellbore isolation issues and (2) special attention to the cement bond settlement, evaluation, and preventative logging for existing wells to ensure effective sealing between the two vulnerable water table resources. Besides, in the CI-11 well accident, the recovery program was not efficient and there was no clear action plan. This increased the risk of action failure or time waste to regain control of the well. Consequently, we suggest preparing a clear and efficient action plan for such accidents to reduce the ecological consequences. This requires further technical detailed study of drilling operations and establishment of a suitable equipment/action plan to handle blowout and annular production accidents.


2019 ◽  
Vol 361 ◽  
pp. 266-277 ◽  
Author(s):  
Céline Madigou ◽  
Kim-Anh Lê Cao ◽  
Chrystelle Bureau ◽  
Laurent Mazéas ◽  
Sébastien Déjean ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document