Thermal performance evaluation of solar cooker with latent and sensible heat storage unit for evening cooking

2015 ◽  
Vol 15 (2) ◽  
pp. 93-102 ◽  
Author(s):  
Vikrant Yadav ◽  
Yogender Kumar ◽  
Himanshu Agrawal ◽  
Avadhesh Yadav
1977 ◽  
Vol 99 (2) ◽  
pp. 174-179 ◽  
Author(s):  
F. W. Schmidt ◽  
R. R. Somers ◽  
J. Szego ◽  
D. H. Laananen

The optimization of the design of a solid sensible heat storage unit initially at a uniform-temperature is presented. The storage unit is composed of a number of rectangular cross-sectional channels for the flowing fluid, connected in parallel and separated by the heat storage material. The complex method for constrained nonlinear optimization as presented by M. J. Box is utilized, with some modifications. The design optimization is based upon achieving maximum utilization of the heat storage or removal capabilities of the material for a given set of operating conditions. This is achieved by varying the storage unit’s geometry while placing constraints on the maximum and minimum length of the unit, fluid channel size, storage material thickness, maximum and minimum outlet fluid temperature, and the minimum amount of heat to be stored.


Author(s):  
Rainer Tamme ◽  
Doerte Laing ◽  
Wolf-Dieter Steinmann

The availability of storage capacity plays an important role for the economic success of solar thermal power plants. For today’s parabolic trough power plants, sensible heat storage systems with operation temperatures between 300°C and 390°C can be used. A solid media sensible heat storage system is developed and will be tested in a parabolic trough test loop at PSA, Spain. A simulation tool for the analysis of the transient performance of solid media sensible heat storage systems has been implemented. The computed results show the influence of various parameters describing the storage system. While the effects of the storage material properties are limited, the selected geometry of the storage system is important. The evaluation of a storage system demands the analysis of the complete power plant and not only of the storage unit. Then the capacity of the system is defined by the electric work produced by the power plant, during a discharge process of the storage unit. The choice of the operation strategy for the storage system proves to be essential for the economic optimization.


1976 ◽  
Vol 98 (3) ◽  
pp. 471-477 ◽  
Author(s):  
F. W. Schmidt ◽  
J. Szego

The transient response of a solid sensible heat storage unit which receives or supplies heat to a single flowing fluid is presented. The storage unit is composed of a number of rectangular cross-sectional channels for the flowing fluid, connected in parallel and separated by the heat storage material. The energy equation for the fluid and the transient conduction equation for the storage material are solved using finite difference techniques. The parameters which characterize the transient behavior of these units are identified. Results suitable for the prediction of the rate of heat storage and the outlet temperature of the fluid leaving the storage unit are presented as functions of the identified nondimensional parameters.


2004 ◽  
Vol 126 (2) ◽  
pp. 794-800 ◽  
Author(s):  
Rainer Tamme ◽  
Doerte Laing ◽  
Wolf-Dieter Steinmann

The availability of storage capacity plays an important role for the economic success of solar thermal power plants. For today’s parabolic trough power plants, sensible heat storage systems with operation temperatures between 300°C and 390°C can be used. A solid media sensible heat storage system is developed and will be tested in a parabolic trough test loop at PSA, Spain. A simulation tool for the analysis of the transient performance of solid media sensible heat storage systems has been implemented. The computed results show the influence of various parameters describing the storage system. While the effects of the storage material properties are limited, the selected geometry of the storage system is important. The evaluation of a storage system demands the analysis of the complete power plant and not only of the storage unit. Then the capacity of the system is defined by the electric work produced by the power plant during a discharge process of the storage unit. The choice of the operation strategy for the storage system proves to be essential for the economic optimization.


Sign in / Sign up

Export Citation Format

Share Document