solid media
Recently Published Documents


TOTAL DOCUMENTS

1074
(FIVE YEARS 186)

H-INDEX

65
(FIVE YEARS 5)

2022 ◽  
Vol 10 (1) ◽  
pp. 8-14
Author(s):  
N. Eliza ◽  
R. Dewanti-Hariyadi ◽  
S. Nurjanah

Bacillus cereus is known to have the ability to adhere and form biofilms on the surface of stainless steel that causes problems in the food industries. Bacterial biofilms generally can increase resistance to sanitizer treatment. This study aimed to evaluate the ability of peracetic acid-based commercial sanitizer to inactivate B. cereus biofilm on stainless steel (SS) surfaces. Biofilm of B. cereus ATCC 10876 was developed on SS surfaces and treated with 7 commercial peracetic acid-based sanitizers at their recommended dosages. Two sanitizers, i.e. B (peracetic acid and QAC) and F (peracetic acid and acidified water) showing the ability to inactivate B. cereus on solid media at concentration of 200, 400, and 800 ppm were further tested on biofilms with contact times of 1, 3, and 5 minutes. The 48 hours biofilms B. cereus contained 2.78-3.78 CFU/cm2. Both sanitizers B and F had significant effects in inactivating B. cereus biofilm. In general, sanitizer B could reduce more biofilm bacteria at any contact time than sanitizer F. Use of 200 ppm of sanitizer B or F 5 minutes could inactivate 3.04 log CFU/cm2 and 2.68 log CFU/cm2 biofilm, respectively. Exposure of B. cereus biofilm to peracetic acid-based sanitizer resulted in the damage of the extracellular matrix of the biofilms. This study showed that commercial sanitizers containing peracetic acid and quaternary ammonium compounds were effective in inactivating B. cereus biofilms.


2022 ◽  
Vol 60 (1) ◽  
pp. 51-55
Author(s):  
Arnab Pal ◽  
Pradipta Panchadhyayee ◽  
Kriti R. Sahu ◽  
Debapriyo Syam

2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Shaoji Cheng ◽  
Guojun Liu ◽  
Cornelius Joseph Clancy ◽  
Minh Hong Thi Nguyen

Background: IAC is the second most common type of invasive Candidiasis, but its pathogenesis is poorly understood. We have shown that Candida albicans DNA damage response genes are strongly induced within intra-abdominal abscesses. Deletion of C. glabrata MSH2, A DNA mismatch repair (MMR) gene, results in a mutator phenotype that facilitates multidrug resistance in vitro and in mouse gastrointestinal tracts. Our goal was to determine if CGMSH2 Contributed to pathogenesis or resistance to the new antifungal rezafungin during IAC. Methods: We createdΔMSH2 in BG2 using SAT-Flipper, and tested virulence and rezafungin responses in a mouse model of IAC. Results: ΔMSH2 displayed no growth defects at 30°C in liquid (YPD, Ypglycerol) or solid media (YPD+0.02% MMS, 1MM H2O2, 1M NACL, 20 UG/ML CW, 250 UG/ML OR 0.02% SDS). ΔMSH2 longevity in YPD was comparable to BG2. Caspofungin-, Rezafungin- and Fluconazole-resistant mutants arose 24-, 16- and 3-fold more often, respectively, for ΔMSH2 than BG2 (108-106 CFU overnight in YPD, selected on 8XMIC-Containing plates). However, respective minimum inhibitory concentrations (MICS) were not different, nor were rezafungin time-kills.ΔMSH2 was comparable to BG2 in peritonitis and abscess burdens in mouse IAC.ΔMSH2 demonstrated significantly greater caspofungin- and fluconazole-tolerance than BG2 in abscesses. Rezafungin reduced peritonitis and abscess burdens ofΔMSH2,BG2 ANDFKS mutant strains to similar extents. Conclusions: CgMSH2 deletionincreased the frequency of spontaneously-arising echinocandin- and fluconazole-resistant colonies in vitro and tolerance in intra-abdominal abscesses, but it did not attenuate virulence or rezafungin responses during IAC.


2021 ◽  
Vol 7 (2) ◽  
pp. 61-67
Author(s):  
Yana Mulyana ◽  
Mariana Mariana ◽  
Joko Purnomo

Fusarium wilt disease/moler is a concern in onion cultivation. Many farmers apply chemical pesticides such as azoxystrobin and difenoconazole to control the diseases. Both of these chemical pesticides are currently exhibiting a decline in effectiveness, prompting farmers to increase the dosage and frequency of application. Recommendations for biological control, including Trichoderma spp.. This study aimed to determine the influence of application time of of Trichoderma spp. in various media types on the incidence of moler disease and shallot growth and yield. This study was conducted in Tabalong district, South Kalimantan, from February to June 2019 using a completely randomized design (CRD) factorial comprising two nested designs. The first factor was the type of media in which Trichoderma spp.. was applied, namely solid and liquid. The second factor was the application time of Trichoderma spp.. Level 1 was the application of Fusarium sp. seven days before planting and Trichoderma spp.. seven days after planting. Level 2 included the application of Trichoderma spp.. seven days before planting and Fusarium sp. simultaneously during planting. Level 3 involved the administration of Trichoderma spp.. concurrently with planting and Fusarium sp. seven days later. This investigation used one positive control (without treatment) and one negative control (shallots inoculated with Fusarium). Each experimental unit was consisted of ten plants and replicated three times. The parameters observed were the incubation period of Fusarium sp., disease incidence, number of leaves, plant height, number of cloves, and average clove weight. The study found that the application time of Trichoderma on various types of media affected the incidence of Fusarium disease, the number of leaves, and the number of shallot cloves.When compared to liquid media, the application of solid media resulted in a reduced incidence of Fusarium disease and a greater frequency of flares. The application time on solid media gave a low response to moles. As for liquid media, the lowest incidence of moler disease occurred at the seven days before planting.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7779
Author(s):  
Mihai Ovidiu Cojocaru ◽  
Mihai Branzei ◽  
Sorin Ciuca ◽  
Ioana Arina Gherghescu ◽  
Mariana Ion ◽  
...  

The scholarly literature records information related to the performance increase of the cutting tools covered by the superficial layers formed “in situ” when applying thermochemical processing. In this context, information is frequently reported on the carbamide role in processes aiming carbon and nitrogen surface saturation. Sulfur, together with these elements adsorbed and diffused in the cutting tools superficial layers, undoubtedly ensures an increase of their operating sustainability. The present paper discusses the process of sulfonitrocarburizing in pulverulent solid media of high-speed tools steel (AISI T1, HS18-0-1) and its consequences. The peculiarity of the considered process is that the source of nitrogen and carbon is mainly carbamide (CON2H4), which is found in solid powdery mixtures together with components that do not lead to cyan complex formation (non-toxic media), and the sulfur source is native sulfur. The kinetics of the sulfonitrocarburizing process, depending on the carbamide proportion in the powdered solid mixture and the processing temperature, was studied. The consequences of the achieved sulfonitrocarburized layers on the cutting tools’ performance are expressed by the maximum permissible cutting speed and the maximum cut length. An interesting aspect is highlighted, namely the possibility of using chemically active mixtures. Their components, by initiation of the metallothermic reduction reaction, become able to provide both elements of interest and the amount of heat needed for the ultrafast saturation of the targeted metal surfaces.


Author(s):  
Hazan Zengin Canalp ◽  
Banu Bayraktar

Using MALDI-TOF MS directly from blood culture bottles reduces the time required for pathogen identification, and the turnaround times for final identification have been compared with overnight incubation from solid media in previous studies. However, identification from a short incubation of agar plates has been increasingly accepted and successfully implemented in routine laboratories, but there is no data comparing direct MALDI-TOF MS with the short-term, incubated agar plates.


2021 ◽  
Author(s):  
Inès Hadrich ◽  
Sourour Neji ◽  
Houaida Trablesi ◽  
Amin Ilahi ◽  
Taieb Chouaki ◽  
...  

Abstract A total of 77 strains of Malassezia were included in this study. Biofilm production and hydrolytic enzymes were studied by using specific solid media. Real-time Reverse Transcriptase qPCR method was applied to determine overexpression of genes encoding extracellular enzyme. All included Malassezia species produced biofilms. No statistical significant difference was observed between biofilm formation of the Malassezia species (P = 0.567) . All Malassezia species produced lipase and 95% of M. globosa showed a strong enzymatic activity (Pz=0.55 ± 0.02). Statistical significant difference was observed between the mean keratinase indices of M. slooffiae and the others Malassezia species ( P = 0.005). The overexpression of one or more genes was observed in 100% of strains isolated from patients with folliculitis, in 87.5% for pityriasis versicolor isolates and in 57.14% for the control group isolates. A statistical significant difference of the lipase gene expression ( P = 0.072) was associated with the strains collected from patients with folliculitis vs group control. This investigation provides more information about the frequency of the production of the major enzymes considered to be virulence factors of Malassezia species. Interestingly, the overexpression of one or more genes was observed in strains isolated from patients with Malassezia disorder.


Author(s):  
Ju Sang Kim ◽  
Yong-hyun Kim ◽  
Sang Haak Lee ◽  
Yee Hyung Kim ◽  
Jin-woo Kim ◽  
...  

Delpazolid, an oxazolidinone, has been studied in non-clinical studies of efficacy and toxicity and Phase 1 clinical studies. Delpazolid has in vitro activity against gram-positive bacteria, including Mycobacterium tuberculosis . This study evaluated the bactericidal activity, safety, and pharmacokinetics of delpazolid in patients with pulmonary tuberculosis (TB). Seventy-nine subjects, aged 19 to 75 years with newly diagnosed smear-positive TB with no prior treatment for the current episode and no confirmed resistance to rifampin or isoniazid, were randomized to receive delpazolid 800 mg once a day (QD), 400 mg twice a day (BID), 800 mg BID or 1200 mg QD or an active control of isoniazid, rifampin, pyrazinamide, and ethambutol (HRZE) or linezolid 600 mg BID. The primary endpoint was the average daily reduction in log transformed bacterial load, assessed on 7H11 solid-media culture, from days 0 to 14. The average daily decline in log-cfu was 0.044±0.016, 0.053±0.017, 0.043±0.016, and 0.019±0.017, for the delpazolid 800 mg QD, 400 mg BID, 800 mg BID and the 1200 mg QD groups, respectively. The average daily decline in log-cfu was 0.192±0.028 for the HRZE group and 0.154±0.023 for the linezolid 600 mg BID group. Three serious adverse events (SAE) were reported, one each in the delpazolid 400 mg BID group (death due to worsening of TB at day 2), the HRZE group (hospitalization due to pleural effusion) and the linezolid group (hyperkalemia); none of the SAEs were assessed as related to study drugs. This study has been registered at ClinicalTrials.gov with registration number NCT02836483.


2021 ◽  
Vol 12 (2) ◽  
pp. 30-37
Author(s):  
Rico Arifandi ◽  
Gerald Adityo Pohan

In the military field, tank is armored fighting vehicles that move using chain-shaped wheels. The tread of the tank chain is a component to tread and move so that it requires tougher properties on the surface and has ductile and tough properties on the inside and is more resistant to wear on the surface. The development of tank chain production materials is necessary for the independence of national defense and security as well as reducing dependence on imports. Imported tank chain hardness value 28 HRC or 286 HV. In this research, the objective of this research is to increase the surface hardness of the steel by carburizing the initial material, especially the low carbon steel ST-37. The carburizing treatment process is a method of adding carbon content in steel using solid media. The carbon media used were mangrove charcoal and tamarind wood charcoal using calcium carbonate (CaCO3) catalyst at a constant heating temperature of 900ºC, variations in holding time of 30 minutes, 60 minutes and 90 minutes, cooled rapidly with water media. Then performed an analysis of the effect of the type of wood charcoal on the mechanical properties of carbon steel ST-37. The results obtained will be applied to the tank chain tread production process. The results of the micro structure of martensite and the highest hardness value were found in the holding time of 60 minutes of mangrove charcoal media with the microstructure results of 63.8% martensite, 36.2% bainite and a hardness value of 453.1 HV. The highest toughness value is found in the holding time of 60 minutes of tamarind wood charcoal media with an impact price (HI) of 0.4345 J/mm2. The difference between the impact test results of tamarind charcoal media with mangroves is not too significant. The higher the martensite phase, the higher the hardness value. However, there is also a bainite phase which can increase the toughness of the steel which will be used as a tread chain production material.


2021 ◽  
Vol 7 (11) ◽  
pp. 973
Author(s):  
Punyawatt Pintathong ◽  
Putarak Chomnunti ◽  
Sarita Sangthong ◽  
Areeya Jirarat ◽  
Phanuphong Chaiwut

Solid-based residues (SBRs) left from harvesting the fruiting bodies of cultured Cordyceps mushrooms are a challenge to sustainability. Therefore, in this study, the SBRs from the cultivation of Cordyceps militaris (C. militaris) via solid-state fermentation (SSF) were employed to prepare crude extracts, with the aim of considering their possible use in cosmetics. The SBRs obtained from cultivation with solid media containing defatted rice bran mixed with barley, white rice, Riceberry rice, and wheat were named SBR-B, SBR-R, SBR-Rb, and SRB-W, respectively. They were extracted with solvents of differing polarity and then evaluated for their total phenolic content (TPC), total flavonoid content (TFC), and total carbohydrate content (TCC). In addition, antioxidant and tyrosinase inhibitory activities, photoprotection, and cytotoxicity were also assessed. The results revealed that the total bioactive contents and biological capacities of crude SBR extracts were significantly influenced by the types of SBR and extraction solvent (p < 0.05). The SBR-B extracted with hot water exhibited the highest antioxidant activity (66.62 ± 2.10, 212.00 ± 3.43, and 101.62 ± 4.42 mg TEAC/g extract) when assayed by DPPH, ABTS, and FRAP methods, respectively, whereas tyrosinase inhibitory activity (51.13 ± 1.11 mg KAE/g extract) with 90.43 ± 1.96% inhibition at 1 mg/mL was excellently achieved by SBR-Rb extracted by 50% (v/v) ethanol. Correlations between bioactive contents in the crude extracts and their biological activities were mostly proven at a strong level (p < 0.01). The capability of the crude extracts to absorb UV over the range of 290–330 nm disclosed their potential roles as natural UV absorbers and boosters. Cytotoxicity analysis using fibroblast cell lines tested with hot water and 50% (v/v) ethanolic SBR extracts demonstrated safe use within a concentration range of 0.001–10 mg/mL. Interestingly, their fibroblast proliferative capacity, indicating anti-aging properties, was highly promoted. The chemical composition analyzed via LC–MS/MS techniques showed that seven phenolic acids and four flavonoids were identified in the crude SBR extracts. Furthermore, the other compounds present included nucleosides, nucleobases, amino acids, sugars, phospholipids, alkaloids, organic acids, vitamins, and peptides. Therefore, it is emphasized that SBRs from C. militaris can be a prospective source for preparing crude extracts employed in cosmetics. Lastly, they could be further utilized as multifunctional ingredients in cosmetics and cosmeceuticals.


Sign in / Sign up

Export Citation Format

Share Document