Engineering Properties of Bituminous Mixtures Blended with Second Reclaimed Asphalt Pavements (R2AP)

2009 ◽  
Vol 10 (sup1) ◽  
pp. 129-149 ◽  
Author(s):  
Jian-Shiuh Chen ◽  
Ching-Hsiung Wang ◽  
Chien-Chung Huang
2007 ◽  
Vol 34 (5) ◽  
pp. 581-588 ◽  
Author(s):  
J S Chen ◽  
P Y Chu ◽  
Y Y Lin ◽  
K Y Lin

Abstract: The purpose of this study was to recommend a testing procedure to detect the content of reclaimed asphalt pavement (RAP) used in hot-mix asphalt mixtures. Asphalt was extracted from RAP for use in blending with new binder and aggregate. The recovered binders were blended with virgin asphalt (AC-10) at 10 different concentrations. A concept called relative energy loss was proposed to determine the engineering properties of recycled asphalt concrete (RAC). The relative energy loss was found to be directly related to the resistance of RAC to moisture-induced damage. A noticeable increase in relative energy loss with as much as 50% RAP was observed. At 20% RAP, there was not enough RAP to change binder or mixture properties. The predicted performance of mixtures containing up to 40% RAP by weight was shown to be similar to that of virgin material mixtures. A model was developed to estimate the RAP content in terms of penetration, viscosity, and relative energy loss. Key words: reclaimed asphalt pavement, relative energy loss, moisture sensitivity.


Author(s):  
Jian-Shiuh Chen ◽  
Han-Chang Ho ◽  
Yen-Yu Lin

The two primary factors that drive the use of reclaimed asphalt pavement (RAP) are economic savings and environmental benefits. However, highway agencies are concerned about the use of a high percentage of RAP in asphalt pavements. This study addressed issues related to the production, construction, properties, and performance of asphalt pavements that contain high percentages of RAP. Mixtures that contained up to 40% RAP were successfully designed, produced, and constructed after proper procedures were followed and attention to detail was paid during design, production, and construction. A separate drum for drying and heating RAP, called a parallel heating system, was used to produce high RAP content asphalt mixtures in a batch plant. Rejuvenating agents were mixed directly in a surge bin to allow the rejuvenator enough time to diffuse into aged RAP binder. Comprehensive laboratory tests were performed to evaluate the air voids, the resilient modulus, the rut depth, and the Cantabro weight loss of asphalt mixtures with high RAP content. A test road was constructed in 2014 to monitor how high RAP asphalt pavements would perform under real traffic and environmental conditions. An in-depth investigation was conducted of pavement performance, including cracking, friction, and rutting. The engineering properties of plant-produced mixtures and field cores were well correlated with the pavement performance of the test road. Test results indicated that high RAP content asphalt mixtures could perform as satisfactorily as those produced with virgin materials to meet in-service requirements.


OALib ◽  
2015 ◽  
Vol 02 (05) ◽  
pp. 1-18 ◽  
Author(s):  
Saad El Hmrawey ◽  
Ahmed Ebrahim Abu El Maaty ◽  
Abdulla Ibrahim Elmohr

Sign in / Sign up

Export Citation Format

Share Document