Drag reduction in spatially developing turbulent boundary layers by spatially intermittent blowing at constant mass-flux

2016 ◽  
Vol 17 (10) ◽  
pp. 913-929 ◽  
Author(s):  
Yukinori Kametani ◽  
Koji Fukagata ◽  
Ramis Örlü ◽  
Philipp Schlatter
2007 ◽  
Vol 594 ◽  
pp. 59-69 ◽  
Author(s):  
MATTHEW J. RINGUETTE ◽  
MINWEI WU ◽  
M. PINO MARTÍN

We demonstrate that data from direct numerical simulation of turbulent boundary layers at Mach 3 exhibit the same large-scale coherent structures that are found in supersonic and subsonic experiments, namely elongated, low-speed features in the logarithmic region and hairpin vortex packets. Contour plots of the streamwise mass flux show very long low-momentum structures in the logarithmic layer. These low-momentum features carry about one-third of the turbulent kinetic energy. Using Taylor's hypothesis, we find that these structures prevail and meander for very long streamwise distances. Structure lengths on the order of 100 boundary layer thicknesses are observed. Length scales obtained from correlations of the streamwise mass flux severely underpredict the extent of these structures, most likely because of their significant meandering in the spanwise direction. A hairpin-packet-finding algorithm is employed to determine the average packet properties, and we find that the Mach 3 packets are similar to those observed at subsonic conditions. A connection between the wall shear stress and hairpin packets is observed. Visualization of the instantaneous turbulence structure shows that groups of hairpin packets are frequently located above the long low-momentum structures. This finding is consistent with the very large-scale motion model of Kim & Adrian (1999).


1988 ◽  
Vol 31 (10) ◽  
pp. 2814 ◽  
Author(s):  
Alexander Sahlin ◽  
Arne V. Johansson ◽  
P. Henrik Alfredsson

AIAA Journal ◽  
1990 ◽  
Vol 28 (2) ◽  
pp. 245-252 ◽  
Author(s):  
Y. G. Guezennec ◽  
H. M. Nagib

2019 ◽  
Vol 865 ◽  
pp. 563-601 ◽  
Author(s):  
Soshi Kawai

Nominally zero-pressure-gradient fully developed flat-plate turbulent boundary layers with heated and unheated isothermal walls at supercritical pressures are studied by solving the full compressible Navier–Stokes equations using direct numerical simulation. With a heated isothermal wall, the wall temperature sets such that the flow temperature varies through the pseudo-critical temperature, and thus pseudo-boiling phenomena occur within the boundary layers. The pseudo-boiling process induces strongly nonlinear real-fluid effects in the flow and interacts with near-wall turbulence. The peculiar abrupt density variations through the pseudo-boiling process induce significant near-wall density fluctuations $\sqrt{\overline{\unicode[STIX]{x1D70C}^{\prime }\unicode[STIX]{x1D70C}^{\prime }}}/\overline{\unicode[STIX]{x1D70C}}\approx 0.4{-}1.0$ within the heated transcritical turbulent boundary layers. The large near-wall density fluctuations induce a turbulent mass flux $\unicode[STIX]{x1D70C}^{\prime }u_{i}^{\prime }$, and the turbulent mass flux amplifies the Favre-averaged velocity fluctuations $u_{i}^{\prime \prime }$ in the near-wall predominant structures of streamwise low-speed streaks that are associated with the ejection (where $u^{\prime \prime }<0$ and $v^{\prime \prime }>0$), while reducing the velocity fluctuations in the high-speed streaks associated with the sweep ($u^{\prime \prime }>0$ and $v^{\prime \prime }<0$). Although the near-wall low-speed and high-speed streak structures dominate the Reynolds-shear-stress generation, the energized Favre-averaged velocity fluctuations in the low-speed streaks enhance both the mean-density- and density-fluctuation-related Reynolds shear stresses ($-\overline{\unicode[STIX]{x1D70C}}\overline{u^{\prime \prime }v^{\prime \prime }}$ and $-\overline{\unicode[STIX]{x1D70C}^{\prime }u^{\prime \prime }v^{\prime \prime }}$) in the ejection event and, as a result, alter the Reynolds-shear-stress profile. The large density fluctuations also alter the near-wall viscous-stress profile and induce a near-wall convective flux $-\overline{\unicode[STIX]{x1D70C}}\widetilde{u}\widetilde{v}$ (due to non-zero $\widetilde{v}$). The changes in the contributions in the stress-balance equation result in a failure of existing velocity transformations to collapse to the universal law of the wall. The large density fluctuations also greatly contribute to the turbulent kinetic energy budget, and especially the mass flux contribution term becomes noticeable as one of the main positive terms. The unheated non-transcritical turbulent boundary layers show a negligible contribution of the real-fluid effects, and the turbulence statistics agree well with the statistics of an incompressible constant-property turbulent boundary layer with a perfect-gas law.


Sign in / Sign up

Export Citation Format

Share Document