turbulent mass flux
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

2019 ◽  
Vol 875 ◽  
pp. 884-913 ◽  
Author(s):  
Kelli Hendrickson ◽  
Dick K.-P. Yue

We analyse the turbulence characteristics and consider the closure modelling of the air entraining flow in the wake of three-dimensional, rectangular dry transom sterns obtained using high-resolution implicit large eddy simulations (iLES) (Hendrickson et al., J. Fluid Mech., vol. 875, 2019, pp. 854–883). Our focus is the incompressible highly variable density turbulence (IHVDT) in the near surface mixed-phase region ${\mathcal{R}}$ behind the stern. We characterize the turbulence statistics in ${\mathcal{R}}$ and determine it to be highly anisotropic due to quasi-steady wave breaking. Using unconditioned Reynolds decomposition for our analysis, we show that the turbulent mass flux (TMF) is important in IHVDT for the production of turbulent kinetic energy and is as relevant to the mean momentum equations as the Reynolds stresses. We develop a simple, regional explicit algebraic closure model for the TMF based on a functional relationship between the fluxes and tensor flow quantities. A priori tests of the model show mean density gradients and buoyancy effects are the main driving parameters for predicting the turbulent mass flux and the model is capable of capturing the highly localized nature of the TMF in ${\mathcal{R}}$.



2018 ◽  
Vol 860 ◽  
pp. 419-440 ◽  
Author(s):  
H. Herlina ◽  
J. G. Wissink

Previous direct numerical simulations (DNS) of mass transfer across the air–water interface have been limited to low-intensity turbulent flow with turbulent Reynolds numbers of $R_{T}\leqslant 500$. This paper presents the first DNS of low-diffusivity interfacial mass transfer across a clean surface driven by high-intensity ($1440\leqslant R_{T}\leqslant 1856$) isotropic turbulent flow diffusing from below. The detailed results, presented here for Schmidt numbers $Sc=20$ and $500$, support the validity of theoretical scaling laws and existing experimental data obtained at high $R_{T}$. In the DNS, to properly resolve the turbulent flow and the scalar transport at $Sc=20$, up to $524\times 10^{6}$ grid points were needed, while $65.5\times 10^{9}$ grid points were required to resolve the scalar transport at $Sc=500$, which is typical for oxygen in water. Compared to the low-$R_{T}$ simulations, where turbulent mass flux is dominated by large eddies, in the present high-$R_{T}$ simulation the contribution of small eddies to the turbulent mass flux was confirmed to increase significantly. Consequently, the normalised mass transfer velocity was found to agree with the $R_{T}^{-1/4}$ scaling, as opposed to the $R_{T}^{-1/2}$ scaling that is typical for low-$R_{T}$ simulations. At constant $R_{T}$, the present results show that the mass transfer velocity $K_{L}$ scales with $Sc^{-1/2}$, which is identical to the scaling found in the large-eddy regime for $R_{T}\leqslant 500$. As previously found for a no-slip interface, also for a shear-free interface the critical $R_{T}$ separating the large- from the small-eddy regime was confirmed to be approximately $R_{T}=500$.



2018 ◽  
Vol 234 ◽  
pp. 356-367 ◽  
Author(s):  
Matteo Carpentieri ◽  
Alan G. Robins ◽  
Paul Hayden ◽  
Edoardo Santi


2010 ◽  
Vol 659 ◽  
pp. 127-190 ◽  
Author(s):  
ARINDAM BANERJEE ◽  
WAYNE N. KRAFT ◽  
MALCOLM J. ANDREWS

The self-similar evolution to turbulence of a multi-mode miscible Rayleigh–Taylor (RT) mixing layer has been investigated for Atwood numbers 0.03–0.6, using an air–helium gas channel experiment. Two co-flowing gas streams, one containing air (on top) and the other a helium–air mixture (at the bottom), initially flowed parallel to each other at the same velocity separated by a thin splitter plate. The streams met at the end of the splitter plate, with the downstream formation of a buoyancy unstable interface, and thereafter buoyancy-driven mixing. This buoyancy-driven mixing layer experiment permitted long data collection times, short transients and was statistically steady. Several significant designs and operating characteristics of the gas channel experiment are described that enabled the facility to be successfully run for At ~ 0.6. We report, and discuss, statistically converged measurements using digital image analysis and hot-wire anemometry. In particular, two hot-wire techniques were developed for measuring the various turbulence and mixing statistics in this air–helium RT experiment. Data collected and discussed include: mean density profiles, growth rate parameters, various turbulence and mixing statistics, and spectra of velocity, density and mass flux over a wide range of Atwood numbers (0.03 ≤ At ≤ 0.6). In particular, the measured data at the small Atwood number (0.03–0.04) were used to evaluate several turbulence-model constants. Measurements of the root mean square (r.m.s.) velocity and density fluctuations at the mixing layer centreline for the large At case showed a strong similarity to lower At behaviours when properly normalized. A novel conditional averaging technique provided new statistics for RT mixing layers by separating the bubble (light fluid) and spike (heavy fluid) dynamics. The conditional sampling highlighted differences in the vertical turbulent mass flux, and vertical velocity fluctuations, for the bubbles and spikes, which were not otherwise observable. Larger values of the vertical turbulent mass flux and vertical velocity fluctuations were found in the downward-falling spikes, consistent with larger growth rates and momentum of spikes compared with the bubbles.



2003 ◽  
Vol 91 (9) ◽  
pp. 1117-1131 ◽  
Author(s):  
Gábor Dezső-Weidinger ◽  
Adel Stitou ◽  
Jeroen van Beeck ◽  
Michel L. Riethmuller




1988 ◽  
Author(s):  
J. ZHU ◽  
R. SO ◽  
M. OTUGEN


1988 ◽  
Vol 31 (4) ◽  
pp. 819-829 ◽  
Author(s):  
J.Y. Zhu ◽  
R.M.C. So ◽  
M.V. Otugen


Sign in / Sign up

Export Citation Format

Share Document