scholarly journals Concept of climate-charged airspaces: a potential policy instrument for internalizing aviation's climate impact of non-CO2 effects

2021 ◽  
pp. 1-20
Author(s):  
Malte Niklaß ◽  
Volker Grewe ◽  
Volker Gollnick ◽  
Katrin Dahlmann
Aerospace ◽  
2020 ◽  
Vol 7 (12) ◽  
pp. 172 ◽  
Author(s):  
Katrin Dahlmann ◽  
Sigrun Matthes ◽  
Hiroshi Yamashita ◽  
Simon Unterstrasser ◽  
Volker Grewe ◽  
...  

An operational measure that is inspired by migrant birds aiming toward the mitigation of aviation climate impact is to fly in aerodynamic formation. When this operational measure is adapted to commercial aircraft it saves fuel and is, therefore, expected to reduce the climate impact of aviation. Besides the total emission amount, this mitigation option also changes the location of emissions, impacting the non-CO2 climate effects arising from NOx and H2O emissions and contrails. Here, we assess these non-CO2 climate impacts with a climate response model to assure a benefit for climate not only due to CO2 emission reductions, but also due to reduced non-CO2 effects. Therefore, the climate response model AirClim is used, which includes CO2 effects and also the impact of water vapor and contrail induced cloudiness as well as the impact of nitrogen dioxide emissions on the ozone and methane concentration. For this purpose, AirClim has been adopted to account for saturation effects occurring for formation flight. The results of the case studies show that the implementation of formation flights in the 50 most popular airports for the year 2017 display an average decrease of fuel consumption by 5%. The climate impact, in terms of average near surface temperature change, is estimated to be reduced in average by 24%, with values of individual formations between 13% and 33%.


Aerospace ◽  
2020 ◽  
Vol 7 (11) ◽  
pp. 156 ◽  
Author(s):  
Sigrun Matthes ◽  
Benjamin Lührs ◽  
Katrin Dahlmann ◽  
Volker Grewe ◽  
Florian Linke ◽  
...  

Aviation can reduce its climate impact by controlling its CO2-emission and non-CO2 effects, e.g., aviation-induced contrail-cirrus and ozone caused by nitrogen oxide emissions. One option is the implementation of operational measures that aim to avoid those atmospheric regions that are in particular sensitive to non-CO2 aviation effects, e.g., where persistent contrails form. The quantitative estimates of mitigation potentials of such climate-optimized aircraft trajectories are required, when working towards sustainable aviation. The results are presented from a comprehensive modelling approach when aiming to identify such climate-optimized aircraft trajectories. The overall concept relies on a multi-dimensional environmental change function concept, which is capable of providing climate impact information to air traffic management (ATM). Estimates on overall climate impact reduction from a one-day case study are presented that rely on the best estimate for climate impact information. Specific weather situation that day, containing regions with high contrail impact, results in a potential reduction of total climate impact, by more than 40%, when considering CO2 and non-CO2 effects, associated with an increase of fuel by about 0.5%. The climate impact reduction per individual alternative trajectory shows a strong variation and, hence, also the mitigation potential for an analyzed city pair, depending on atmospheric characteristics along the flight corridor as well as flight altitude. The robustness of proposed climate-optimized trajectories is assessed by using a range of different climate metrics. A more sustainable ATM needs to integrate comprehensive environmental impacts and associated forecast uncertainties into route optimization in order to identify robust eco-efficient trajectories.


Aerospace ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 36
Author(s):  
Sigrun Matthes ◽  
Ling Lim ◽  
Ulrike Burkhardt ◽  
Katrin Dahlmann ◽  
Simone Dietmüller ◽  
...  

Aviation is seeking for ways to reduce its climate impact caused by CO2 emissions and non-CO2 effects. Operational measures which change overall flight altitude have the potential to reduce climate impact of individual effects, comprising CO2 but in particular non-CO2 effects. We study the impact of changes of flight altitude, specifically aircraft flying 2000 feet higher and lower, with a set of global models comprising chemistry-transport, chemistry-climate and general circulation models integrating distinct aviation emission inventories representing such alternative flight altitudes, estimating changes in climate impact of aviation by quantifying radiative forcing and induced temperature change. We find in our sensitivity study that flying lower leads to a reduction of radiative forcing of non-CO2 effects together with slightly increased CO2 emissions and impacts, when cruise speed is not modified. Flying higher increases radiative forcing of non-CO2 effects by about 10%, together with a slight decrease of CO2 emissions and impacts. Overall, flying lower decreases aviation-induced temperature change by about 20%, as a decrease of non-CO2 impacts by about 30% dominates over slightly increasing CO2 impacts assuming a sustained emissions scenario. Those estimates are connected with a large but unquantified uncertainty. To improve the understanding of mechanisms controlling the aviation climate impact, we study the geographical distributions of aviation-induced modifications in the atmosphere, together with changes in global radiative forcing and suggest further efforts in order to reduce long standing uncertainties.


Sign in / Sign up

Export Citation Format

Share Document