Electric field gradients in ionic crystals III. nuclear quadrupole resonance in thorium tetrachloride

1966 ◽  
Vol 13 (123) ◽  
pp. 515-519 ◽  
Author(s):  
J. Ramakrishna
2000 ◽  
Vol 55 (1-2) ◽  
pp. 301-310 ◽  
Author(s):  
N. Ulbrich ◽  
W. Tröger ◽  
T. Butz ◽  
P. Blaha

The negative thermal expansion in ZrW2O8 was investigated on a microscopic scale by temperature dependent measurements of the electric field gradients at the nuclear probe 187W(β-) 187Re using time differential perturbed angular correlation spectroscopy. Two distinct nuclear quadrupole interactions I VzzRe1 l= 18.92(4) • 10 21 V/m2 , ηRe1 = 0.0 and I VzzRe1 l = 4.55(2) • 1021 V/m2 , ηRe1 = 0.053(3) were observed at 295 K, which are assigned to the two crystallographically distinct W0 4 tetrahedra of the room temperature structure. Ab initio calculations of electron densities and electric field gradients with 1:7 Re-impurities using the full potential linearized augmented plane wave package WIEN97 yield the electric field gradients VzzRe1 = 12.63 • 10 21 V/m2 , ηRe1 = 0.0 and VzzRe2 =4.90 • 10 21 V/m2 , ηRe2 =0.0. The observed temperature dependence of the nuclear quadrupole interactions agrees well with the structural phase transition at 428 K observed by neutron and x-ray diffraction. Our experiments corroborate the suggested mechanism of coupled librations of rigid ZrO6 octahedra and WO4 tetrahedra, which is an alternative description of transverse vibrations of oxygen atoms in Zr-O-W bonds, for the negative thermal expansion in ZrW2 O8


Sign in / Sign up

Export Citation Format

Share Document