thermal expansion
Recently Published Documents


TOTAL DOCUMENTS

13903
(FIVE YEARS 1760)

H-INDEX

140
(FIVE YEARS 14)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 564
Author(s):  
Beate Capraro ◽  
Manuel Heidenreich ◽  
Jörg Töpfer

We have studied the sintering behavior of CT708 LTCC tapes with large CTE of 10.6 ppm/K. This low-k dielectric LTCC material is a quartz-based glass ceramic composite system with partial crystallization of celsian upon firing. The shrinkage, densification and dielectric properties were examined using different heating rates and a sintering temperature of 900 °C. The maximum shrinkage rate is at 836 °C (for a heating rate of 2 K/min) with a sintering density of 95% and a permittivity of ε’ = 5.9 and tan δ = 0.0004 (at 1 GHz). Due to their similar shrinkage and thermal expansion properties, CT708 tapes may be cofired with functional ceramic layers. As an example, we report on cofiring of a multilayer laminate of CT708 and a Sc-substituted hexagonal ferrite for applications as integrated microwave circulator components. This demonstrates the feasibility of cofiring of functional ceramic tapes and tailored LTCC tapes and documents the potential for the realization of complex LTCC multilayer architectures.


IUCrJ ◽  
2022 ◽  
Vol 9 (2) ◽  
Author(s):  
Manfred Wildner ◽  
Boris A. Zakharov ◽  
Nikita E. Bogdanov ◽  
Dominik Talla ◽  
Elena V. Boldyreva ◽  
...  

Monohydrate sulfate kieserites (M 2+SO4·H2O) and their solid solutions are essential constituents on the surface of Mars and most likely also on Galilean icy moons in our solar system. Phase stabilities of end-member representatives (M 2+ = Mg, Fe, Co, Ni) have been examined crystallographically using single-crystal X-ray diffraction at 1 bar and temperatures down to 15 K, by means of applying open He cryojet techniques at in-house laboratory instrumentation. All four representative phases show a comparable, highly anisotropic thermal expansion behavior with a remarkable negative thermal expansion along the monoclinic b axis and a pronounced anisotropic expansion perpendicular to it. The lattice changes down to 15 K correspond to an `inverse thermal pressure' of approximately 0.7 GPa, which is far below the critical pressures of transition under hydrostatic compression (Pc ≥ 2.40 GPa). Consequently, no equivalent structural phase transition was observed for any compound, and neither dehydration nor rearrangements of the hydrogen bonding schemes have been observed. The M 2+SO4·H2O (M 2+ = Mg, Fe, Co, Ni) end-member phases preserve the kieserite-type C2/c symmetry; hydrogen bonds and other structural details were found to vary smoothly down to the lowest experimental temperature. These findings serve as an important basis for the assignment of sulfate-related signals in remote-sensing data obtained from orbiters at celestial bodies, as well as for thermodynamic considerations and modeling of properties of kieserite-type sulfate monohydrates relevant to extraterrestrial sulfate associations at very low temperatures.


2022 ◽  
Author(s):  
Matthias Agne ◽  
Shashwat Anand ◽  
Jeffrey Snyder

Abstract Atomic vibrations, in the form of phonons, are foundational in describing the thermal behavior of materials. The possible frequencies of phonons in materials are governed by the complex bonding between atoms, which is physically represented by a spring-mass model that can account for interactions (spring forces) between the atoms (masses). The lowest order, harmonic, approximation only considers linear forces between atoms and is thought incapable of explaining phenomena like thermal expansion and thermal conductivity, which are attributed to non-linear, anharmonic, interactions. Here we show that the kinetic energy of atoms in a solid produces a pressure much like the kinetic energy of atoms in a gas does. This vibrational or phonon pressure naturally increases with temperature, as it does in a gas, and therefore results in a thermal expansion. Because thermal expansion thermodynamically defines a Grüneisen parameter, which is a typical metric of anharmonicity, we show that even a harmonic solid will necessarily have some anharmonicity. A consequence of this phonon pressure model is a harmonic estimation of the Grüneisen parameter from the ratio of the transverse and longitudinal speeds of sound. We demonstrate the immediate utility of this model by developing a high-throughput harmonic estimate of lattice thermal conductivity that is comparable to other state-of-the-art estimations. By linking harmonic and anharmonic properties explicitly, this study provokes new ideas about the fundamental nature of anharmonicity, while also providing a basis for new materials engineering design metrics.


Author(s):  
Yumeng Xiang ◽  
Xiangkai Hao ◽  
Xiansheng Liu ◽  
Mengyue Wang ◽  
Jianjun Tian ◽  
...  
Keyword(s):  

Author(s):  
Koshi Takenaka ◽  
Masato Kano ◽  
Ryota Kasugai ◽  
Kohei Takada ◽  
Koki Eto ◽  
...  

Abstract Negative thermal expansion (NTE) is exhibited over the entire x range for Cu1.8Zn0.2V2–xPxO7. In particular, dilatometric measurements using epoxy resin matrix composites containing the spray-dried powder demonstrated that the thermal expansion suppressive capability was almost unchanged for x≤0.1. With increasing x, the x-ray diffraction peak position moves systematically, but some peaks are extremely broad and/or asymmetric, suggesting disorder in the internal structure. The crystallographic analysis confirmed NTE enhancement by microstructural effects at least for x=0.2. Preliminary measurements suggest higher resistivity and lower dielectric constant than that of pure vanadate, which is suitable for application to electronic devices.


2022 ◽  
Vol 12 (2) ◽  
pp. 577
Author(s):  
Wenqing Wei ◽  
Yongfeng Zhang ◽  
Zongzheng Du ◽  
Minwei Song ◽  
Yuanyuan Zhang ◽  
...  

The coefficient of thermal expansion (CTE) is an important property of ultra-low expansion (ULE) glass, and the ultrasonic velocity method has shown excellent performance for the nondestructive measurement of CTE in large ULE glass. In this method, the accurate acquisition of the ultrasonic velocity in ULE glass is necessary. Herein, we present a correlation method to determine the ultrasonic TOF in ULE glass and to further obtain the ultrasonic longitudinal wave velocity (cL) indirectly. The performance of this method was verified by simulations. Considering the dependence of cL on temperature (T), we carried out the derivation of the analytical model between cL and T. Based on reasonable constant assumptions in the physical sense, a cL–T exponential model was produced, and some experimental results support this model. Additional experiments were carried out to validate the accuracy of the cL–T exponential model. The studies we conducted indicate that the cL–T exponential model can reliably predict the ultrasonic velocity in ULE glass at different temperatures, providing a means for the nondestructive CTE measurement of large ULE glass at a specified temperature.


2022 ◽  
Vol 60 (1) ◽  
pp. 68-75
Author(s):  
Bok-Hyun Oh ◽  
Chung-Il Ma ◽  
Ji-Yeon Kwak ◽  
Heon Kong ◽  
Sang-Jin Lee

A copper (Cu) metal-ceramic filler composite with high thermal conductivity and a suitable thermal expansion coefficient was designed for application as a high-performance heat dissipation material. The purpose of the designed material was to utilize the high thermal conductivity of Cu while lowering its high coefficient of thermal expansion by using a ceramic filler. In this study, a Cu-sol containing a certain amount of AlN or SiC ceramic filler was prepared using a non-aqueous solvent. A complex was produced by applying a PVB polymer to prepare a homogeneous precursor. The composite sintered without pressure in a reducing atmosphere showed low thermal conductivity due to residual pores, but the hot press sintered composite exhibited improved thermal conductivity. The Cu composite with 30 wt% AlN filler added exhibited a thermal conductivity of 290 W/m·K and a thermal expansion coefficient of 9.2 × 10-6/oC. Due to the pores in the composite, the thermal conductivity showed some difference from the theoretical value calculated from the rule of mixture. However, the thermal expansion coefficient did not show any significant difference.


Sign in / Sign up

Export Citation Format

Share Document