negative thermal expansion
Recently Published Documents


TOTAL DOCUMENTS

1144
(FIVE YEARS 297)

H-INDEX

78
(FIVE YEARS 9)

IUCrJ ◽  
2022 ◽  
Vol 9 (2) ◽  
Author(s):  
Manfred Wildner ◽  
Boris A. Zakharov ◽  
Nikita E. Bogdanov ◽  
Dominik Talla ◽  
Elena V. Boldyreva ◽  
...  

Monohydrate sulfate kieserites (M 2+SO4·H2O) and their solid solutions are essential constituents on the surface of Mars and most likely also on Galilean icy moons in our solar system. Phase stabilities of end-member representatives (M 2+ = Mg, Fe, Co, Ni) have been examined crystallographically using single-crystal X-ray diffraction at 1 bar and temperatures down to 15 K, by means of applying open He cryojet techniques at in-house laboratory instrumentation. All four representative phases show a comparable, highly anisotropic thermal expansion behavior with a remarkable negative thermal expansion along the monoclinic b axis and a pronounced anisotropic expansion perpendicular to it. The lattice changes down to 15 K correspond to an `inverse thermal pressure' of approximately 0.7 GPa, which is far below the critical pressures of transition under hydrostatic compression (Pc ≥ 2.40 GPa). Consequently, no equivalent structural phase transition was observed for any compound, and neither dehydration nor rearrangements of the hydrogen bonding schemes have been observed. The M 2+SO4·H2O (M 2+ = Mg, Fe, Co, Ni) end-member phases preserve the kieserite-type C2/c symmetry; hydrogen bonds and other structural details were found to vary smoothly down to the lowest experimental temperature. These findings serve as an important basis for the assignment of sulfate-related signals in remote-sensing data obtained from orbiters at celestial bodies, as well as for thermodynamic considerations and modeling of properties of kieserite-type sulfate monohydrates relevant to extraterrestrial sulfate associations at very low temperatures.


Author(s):  
Koshi Takenaka ◽  
Masato Kano ◽  
Ryota Kasugai ◽  
Kohei Takada ◽  
Koki Eto ◽  
...  

Abstract Negative thermal expansion (NTE) is exhibited over the entire x range for Cu1.8Zn0.2V2–xPxO7. In particular, dilatometric measurements using epoxy resin matrix composites containing the spray-dried powder demonstrated that the thermal expansion suppressive capability was almost unchanged for x≤0.1. With increasing x, the x-ray diffraction peak position moves systematically, but some peaks are extremely broad and/or asymmetric, suggesting disorder in the internal structure. The crystallographic analysis confirmed NTE enhancement by microstructural effects at least for x=0.2. Preliminary measurements suggest higher resistivity and lower dielectric constant than that of pure vanadate, which is suitable for application to electronic devices.


2021 ◽  
Vol 8 ◽  
Author(s):  
James N. Grima-Cornish ◽  
Daphne Attard ◽  
Kenneth E. Evans ◽  
Joseph N. Grima

Negative thermal expansion (NTE) materials and structures exhibit the anomalous property of shrinking rather than expanding when heated. This work examines the potential of multi-material planar re-entrant and non-re-entrant honeycombs to exhibit anomalous thermal expansion properties. Expressions for the coefficient of thermal expansion as a function of the geometric parameters and intrinsic thermal expansion properties were derived for any in-plane direction. It was shown that re-entrant honeycombs, a metamaterial which is well known for its auxetic characteristics, can be made to exhibit NTE in specific directions when constructed from conventional positive thermal expansion (PTE) materials, provided that the slanting ligaments expand more than the vertical ligaments when heated and that the geometry is amenable. Conversely, it was shown that the construction of such honeycombs from NTE components will not necessarily result in a system which exhibits NTE in all directions. Furthermore, conditions which result in honeycombs demonstrating zero thermal expansion (ZTE) coefficients in specific directions were also explored.


2021 ◽  
Author(s):  
Francesco Marin ◽  
Serena Tombolesi ◽  
Tommaso Salzillo ◽  
Omer Yaffe ◽  
Lucia Maini

N,N’-dipentyl-3,4,9,10-perylendiimide (PDI-C5) is an organic semiconducting material which has been extensively investigated as model compound for its optoelectronic properties. It is known to be highly thermally stable, that it exhibits solid-state transitions with temperature and that thermal treatments lead to an improvement in its performance in devices. Here we report a full thermal characterization of PDI-C5 by combination of differential scanning calorimetry, variable temperature X-ray diffraction, hot stage microscopy, and variable temperature Raman spectroscopy. We identified two high temperature polymorphs, form II and form III, which form respectively at 112 °C and at 221 °C and we determined their crystal structure from powder data. Form II is completely reversible upon cooling with low hysteresis, while form III revealed a different thermal behaviour upon cooling depending on the technique and crystal size. The crystal structure’s features of the different polymorphs are discussed and compared, and we looked into the role of the perylene core and alkyl chains during solid-state transitions. The thermal expansion principal axis of PDI-C5 crystal forms is reported showing that all the reported forms possess negative thermal expansion (X1) and large positive thermal expansion (X3) which are correlated to thermal behaviour observed.


2021 ◽  
Author(s):  
Omer Tayfuroglu ◽  
Abdul Kadir Kocak ◽  
Yunus Zorlu

Metal‑organic frameworks (MOFs) with their exceptional porous and organized structures have been subject of numerous applications. Predicting macroscopic properties from atomistic simulations require the most accurate force fields, which is still a major problem due to MOFs’ hybrid structures governed by covalent, ionic and dispersion forces. Application of ab‑initio molecular dynamics to such large periodic systems are thus beyond the current computational power. Therefore, alternative strategies must be developed to reduce computational cost without losing reliability. In this work, we describe the construction of a neural network potential (NNP) for IRMOF‑n series (n=1,4,7,10) trained by PBE-D4/def2-TZVP reference data of MOF fragments. We validated the resulting NNP on both fragments and bulk MOF structures by prediction of properties such as equilibrium lattice constants, phonon density of states and linker orientation. The energy and force RMSE values for the fragments are only 0.0017 eV/atom and 0.15 eV/Å, respectively. The NNP predicted equilibrium lattice constants of bulk structures, which are not included in training, are off by only 0.2-2.4% from experimental results. Moreover, our fragment trained NNP greatly predicts phenylene ring torsional energy barrier, equilibrium bond distances and vibrational density of states of bulk MOFs. Furthermore, NNP allows us to investigate unusual behaviors of selected MOFs such as the thermal expansion properties and the effect of mechanical strain on the adsorption of hydrogen and methane molecules. The NNP based molecular dynamics (MD) simulations suggest the IRMOF‑4 and IRMOF‑7 to have positive‑to‑negative thermal expansion coefficients while the rest to have only negative thermal expansion under the studied temperatures of 200 K to 400 K. The deformation of bulk structure by reduction of unit cell volume has shown to increase volumetric methane uptake in IRMOF‑1 but decrease in IRMOF‑7 due to the steric hindrance.


2021 ◽  
Vol 104 (21) ◽  
Author(s):  
Tobias A. Bird ◽  
Mark G. L. Wilkinson ◽  
David A. Keen ◽  
Ronald I. Smith ◽  
Nicholas C. Bristowe ◽  
...  

2021 ◽  
Vol 449 ◽  
pp. 214204
Author(s):  
Naike Shi ◽  
Yuzhu Song ◽  
Xianran Xing ◽  
Jun Chen

Author(s):  
Piotr Rejnhardt ◽  
Marek Drozd ◽  
Marek Daszkiewicz

The phase transition observed in a temperature-dependent experiment at 174 K is unachievable under high-pressure conditions. Negative thermal expansion for phase (II) and negative compressibility for phase (I) were observed. A new salt of 1H-pyrazole-1-carboxamidine, (HPyCA)NO3, for guanylation reaction was obtained in a crystalline form. The compound crystallizes in monoclinic space group P21/c and a phase transition at 174 K to triclinic modification P 1 was found. An unusual increase of the unit-cell volume was observed just after transition. Although the volume decreases upon cooling, it remains higher down to 160 K in comparison to the unit-cell volume of phase (I). The mechanism of the phase transition is connected with a minor movement of the nitrate anions. The triclinic phase was unreachable at room-temperature high-pressure conditions up to 1.27 GPa. On further compression, delamination of the crystal was observed. Phase (I) exhibits negative linear compressibility, whereas abnormal behaviour of the b unit-cell parameter upon cooling was observed, indicating negative thermal linear expansion. The unusual nature of the compound is associated with the two-dimensional hydrogen-bonding network, which is less susceptible to deformation than stacking interactions connecting the layers of hydrogen bonds. Infrared spectroscopy and differential scanning calorimetry measurements were used to investigate the changes of intermolecular interactions during the phase transition.


2021 ◽  
Vol 119 (20) ◽  
pp. 201906
Author(s):  
Y. Kadowaki ◽  
R. Kasugai ◽  
Y. Yokoyama ◽  
N. Katayama ◽  
Y. Okamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document