Effect of the Fusion Fuels’ Polarization on Neutron Wall Loading Distribution in CFETR

2021 ◽  
pp. 1-10
Author(s):  
Wenjun Yang ◽  
Guoqiang Li ◽  
Xueyu Gong ◽  
Xiang Gao ◽  
Xiaoe Li ◽  
...  
Keyword(s):  
2021 ◽  
Vol 165 ◽  
pp. 112232
Author(s):  
Shijie Cui ◽  
Yueheng Lang ◽  
Qiang Lian ◽  
Xinyu Jiang ◽  
Dalin Zhang ◽  
...  
Keyword(s):  

Author(s):  
Radosław Jasiński

This paper contains theoretical fundamentals of strut and tie models, used in unreinforced horizontal shear walls. Depending on support conditions and wall loading, we can distinguish models with discrete bars when point load is applied to the wall (type I model) or with continuous bars (type II model) when load is uniformly distributed at the wall boundary. The main part of this paper compares calculated results with the own tests on horizontal shear walls made of solid brick, silicate elements and autoclaved aerated concrete. The tests were performed in Poland. The model required some modifications due to specific load and static diagram.


2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Abdullah Y. Usmani ◽  
K. Muralidhar

Abstract Fluid loading within an intracranial aneurysm is difficult to measure but can be related to the shape of the flow passage. The outcome of excessive loading is a fatal hemorrhage, making it necessary for early diagnosis. However, arterial diseases are asymptomatic and clinical assessment is a challenge. A realistic approach to examining the severity of wall loading is from the morphology of the aneurysm itself. Accordingly, this study compares pulsatile flow (Reynolds number Re = 426, Womersley number Wo = 4.7) in three different intracranial aneurysm geometries. Specifically, the spatio-temporal movement of vortices is followed in high aspect ratio aneurysm models whose domes are inclined along with angles of 0, 45, and 90 deg relative to the plane of the parent artery. The study is based on finite volume simulation of unsteady three-dimensional flow while a limited set of particle image velocimetry experiments have been carried out. Within a pulsatile cycle, an increase in inclination (0–90 deg) is seen to shift the point of impingement from the distal end toward the aneurysmal apex. This change in flow pattern strengthens helicity, drifts vortex cores, enhances spatial displacement of the vortex, and generates skewed Dean's vortices on transverse planes. Patches of wall shear stress and wall pressure shift spatially from the distal end in models of low inclination (0–45 deg) and circumscribe the aneurysmal wall for an inclination angle of 90 deg. Accordingly, it is concluded that high angles of inclination increase rupture risks while lower inclinations are comparatively safe.


2000 ◽  
Vol 283-287 ◽  
pp. 588-592 ◽  
Author(s):  
C.P.C. Wong

2003 ◽  
Vol 44 (1) ◽  
pp. 59-63 ◽  
Author(s):  
I. N. Sviatoslavsky ◽  
M. E. Sawan ◽  
S. Majumdar

1985 ◽  
Vol 58 (6) ◽  
pp. 2027-2032 ◽  
Author(s):  
S. N. Hussain ◽  
R. L. Pardy

The effects of selective restriction of rib cage (Res,rc) and abdominal wall (Res,ab) movements on endurance of short-term constant-load heavy exercise and on diaphragmatic function during such exercise were examined in five normal young men. An inelastic surgical corset was used to achieve Res,rc and Res,ab. Subjects exercised on a cycle ergometer at 80% of their maximum power output to exhaustion on three occasions: with Res,rc, with Res,ab, and without restriction of chest wall movements (control). Transdiaphragmatic (Pdi), esophageal, and gastric pressures were measured. Electromyogram of the diaphragm was recorded by an esophageal electrode, and the ratio of the power content of a high-frequency to low-frequency band (H/L ratio) was measured. In addition, maximum Pdi (Pdimax) pre- and immediately postexercise was recorded. Res,rc was associated with a shorter endurance time, a progressive decline of the H/L ratio, and a significant reduction of Pdimax postexercise, whereas no such changes were found with Res,ab. We conclude that diaphragmatic function was well defended with abdominal wall loading, whereas limitation of rib cage expansion reduced diaphragmatic endurance during exercise. The diaphragmatic tension-time index (TTdi) in exercise was always less than the critical value of 0.15 found by Bellemare and Grassino (J. Appl. Physiol. 53: 1190–1195, 1982) when subjects inspired against large resistive loads at normal minute ventilations. We suggest that the higher inspiratory flow rate (P less than 0.05) and breathing frequency (P less than 0.05) account for the occurrence of diaphragmatic fatigue in exercise with Res,rc when the TTdi was 0.06 +/- 0.02.


Sign in / Sign up

Export Citation Format

Share Document