scholarly journals Anillin/Mid1p interacts with the ESCRT-associated protein Vps4p and mitotic kinases to regulate cytokinesis in fission yeast

Cell Cycle ◽  
2021 ◽  
pp. 1-16
Author(s):  
Imane M. Rezig ◽  
Wandiahyel G. Yaduma ◽  
Gwyn W. Gould ◽  
Christopher J. McInerny
2020 ◽  
Vol 64 (2) ◽  
pp. 325-336 ◽  
Author(s):  
Dimitriya H. Garvanska ◽  
Jakob Nilsson

Abstract Kinetochores are instrumental for accurate chromosome segregation by binding to microtubules in order to move chromosomes and by delaying anaphase onset through the spindle assembly checkpoint (SAC). Dynamic phosphorylation of kinetochore components is key to control these activities and is tightly regulated by temporal and spatial recruitment of kinases and phosphoprotein phosphatases (PPPs). Here we focus on PP1, PP2A-B56 and PP2A-B55, three PPPs that are important regulators of mitosis. Despite the fact that these PPPs share a very similar active site, they target unique ser/thr phosphorylation sites to control kinetochore function. Specificity is in part achieved by PPPs binding to short linear motifs (SLiMs) that guide their substrate specificity. SLiMs bind to conserved pockets on PPPs and are degenerate in nature, giving rise to a range of binding affinities. These SLiMs control the assembly of numerous substrate specifying complexes and their position and binding strength allow PPPs to target specific phosphorylation sites. In addition, the activity of PPPs is regulated by mitotic kinases and inhibitors, either directly at the activity level or through affecting PPP–SLiM interactions. Here, we discuss recent progress in understanding the regulation of PPP specificity and activity and how this controls kinetochore biology.


Author(s):  
Atsuko Shirai ◽  
Akihisa Matsuyama ◽  
Yoko Yashiroda ◽  
Ritsuko Arai ◽  
Minoru Yoshida

Sign in / Sign up

Export Citation Format

Share Document