linear motifs
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 47)

H-INDEX

26
(FIVE YEARS 5)

2022 ◽  
Vol 479 (1) ◽  
pp. 1-22
Author(s):  
Johanna Kliche ◽  
Ylva Ivarsson

Cellular function is based on protein–protein interactions. A large proportion of these interactions involves the binding of short linear motifs (SLiMs) by folded globular domains. These interactions are regulated by post-translational modifications, such as phosphorylation, that create and break motif binding sites or tune the affinity of the interactions. In addition, motif-based interactions are involved in targeting serine/threonine kinases and phosphatases to their substrate and contribute to the specificity of the enzymatic actions regulating which sites are phosphorylated. Here, we review how SLiM-based interactions assist in determining the specificity of serine/threonine kinases and phosphatases, and how phosphorylation, in turn, affects motif-based interactions. We provide examples of SLiM-based interactions that are turned on/off, or are tuned by serine/threonine phosphorylation and exemplify how this affects SLiM-based protein complex formation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Theodore G. Smith ◽  
Anuli C. Uzozie ◽  
Siyuan Chen ◽  
Philipp F. Lange

AbstractThe local sequence context is the most fundamental feature determining the post-translational modification (PTM) of proteins. Recent technological improvements allow for the detection of new and less prevalent modifications. We found that established state-of-the-art algorithms for the detection of PTM motifs in complex datasets failed to keep up with this technological development and are no longer robust. To overcome this limitation, we developed RoLiM, a new linear motif deconvolution algorithm and webserver, that enables robust and unbiased identification of local amino acid sequence determinants in complex biological systems demonstrated here by the analysis of 68 modifications found across 30 tissues in the human draft proteome map. Furthermore, RoLiM analysis of a large-scale phosphorylation dataset comprising 30 kinase inhibitors of 10 protein kinases in the EGF signalling pathway identified prospective substrate motifs for PI3K and EGFR.


2021 ◽  
Author(s):  
Hilmar Strickfaden ◽  
Kristal Missiaen ◽  
Justin W Knechtel ◽  
Michael J Hendzel ◽  
D Alan Underhill

Cells use multiple strategies to compartmentalize functions through a combination of membrane-bound and membraneless organelles. The latter represent complex assemblies of biomolecules that coalesce into a dense phase through low affinity, multivalent interactions and undergo rapid exchange with the surrounding dilute phase. We describe a liquid-like state for the lysine methyltransferase KMT5C characterized by diffusion within heterochromatin condensates but lacking appreciable nucleoplasmic exchange. Retention was strongly correlated with reduction of condensate surface area, suggesting formation of a liquid droplet with high connectivity. This behavior mapped to a discrete domain whose activity was dependent on multiple short linear motifs. Moreover, it was strikingly resilient to marked phylogenetic differences or targeted changes in intrinsic disorder, charge, sequence, and architecture. Collectively, these findings show that a limited number of sequence features can dominantly encode multivalency, localization, and dynamic behavior within heterochromatin condensates to confer protein retention without progression to a gel or solid.


2021 ◽  
Author(s):  
Nairi Hartooni ◽  
Jongmin Sung ◽  
Ankur Jain ◽  
David O. Morgan

Robust regulatory signals in the cell often depend on interactions between short linear motifs (SLiMs) and globular proteins. Many of these interactions are poorly characterized because the binding proteins cannot be produced in the amounts needed for traditional methods. To address this problem, we developed a single-molecule off-rate (SMOR) assay based on microscopy of fluorescent ligand binding to immobilized protein partners. We used it to characterize substrate binding to the Anaphase-Promoting Complex/Cyclosome (APC/C), a ubiquitin ligase that triggers chromosome segregation. We find that SLiMs in APC/C substrates (the D box and KEN box) display distinct affinities and specificities for the substrate-binding subunits of the APC/C, and we show that multiple SLiMs in a substrate generate a high-affinity multivalent interaction. The remarkably adaptable substrate-binding mechanisms of the APC/C have the potential to govern the order of substrate destruction in mitosis.


2021 ◽  
Vol 22 (17) ◽  
pp. 9514
Author(s):  
Ilona Faustova ◽  
Kaidi Möll ◽  
Ervin Valk ◽  
Mart Loog ◽  
Mihkel Örd

Cyclins are the activators of cyclin-dependent kinase (CDK) complex, but they also act as docking scaffolds for different short linear motifs (SLiMs) in CDK substrates and inhibitors. According to the unified model of CDK function, the cell cycle is coordinated by CDK both via general CDK activity thresholds and cyclin-specific substrate docking. Recently, it was found that the G1-cyclins of S. cerevisiae have a specific function in promoting polarization and growth of the buds, making the G1 cyclins essential for cell survival. Thus, while a uniform CDK specificity of a single cyclin can be sufficient to drive the cell cycle in some cells, such as in fission yeast, cyclin specificity can be essential in other organisms. However, the known G1-CDK specific LP docking motif, was not responsible for this essential function, indicating that G1-CDKs use yet other unknown docking mechanisms. Here we report a discovery of a G1 cyclin-specific (Cln1,2) lysine-arginine-rich helical docking motif (the K/R motif) in G1-CDK targets involved in the mating pathway (Ste7), transcription (Xbp1), bud morphogenesis (Bud2) and spindle pole body (Spc29, Spc42, Spc110, Sli15) function of S. cerevisiae. We also show that the docking efficiency of K/R motif can be regulated by basophilic kinases such as protein kinase A. Our results further widen the list of cyclin specificity mechanisms and may explain the recently demonstrated unique essential function of G1 cyclins in budding yeast.


2021 ◽  
Author(s):  
Mariano Martin ◽  
Carlos Pablo Modenutti ◽  
Juan Pablo Nicola ◽  
Marcelo Adrian Marti

Short linear motifs (SLiMs) are key to cell physiology mediating reversible protein-protein interactions. Precise identification of SLiMs remains a challenge, being the main drawback of most bioinformatic prediction tools their low specificity (high number of false positives). An important, usually overlooked, aspect is the relation between SLiMs mutations and disease. The presence of variants in each residue position can be used to assess the relevance of the corresponding residue(s) for protein function, and its (in)tolerance to change. In the present work, we combined sequence variant information and structural analysis of the energetic impact of single amino acid substitution (SAS) in SLiM-Receptor complex structure, and showed that it significantly improves prediction of true functional SLiMs. Our strategy is based on building a SAS tolerance matrix that shows, for each position, whether one of the possible 19 SAS is tolerated or not. Herein we present the MotSASi strategy and analyze in detail 4 SLiMs involved in intracellular protein trafficking. Our results show that inclusion of variant and sequence information significantly improves both prediction of true SLiMs and rejection of false positives, while also allowing better classification of variants inside SLiMs, a results with a direct impact in clinical genomics.


2021 ◽  
Author(s):  
Maximilian Seidel ◽  
Anja Becker ◽  
Filipa Pereira ◽  
Jonathan J.M. Landry ◽  
Nayara Trevisan Doimo de Azevedo ◽  
...  

During the co-translational assembly of protein complexes, a fully synthesized subunit engages with the nascent chain of a newly synthesized interaction partner. Such events are thought to contribute to productive assembly, but their exact physiological relevance remains underexplored. Here, we examined structural motifs contained in nucleoporins for their potential to facilitate co-translational assembly. We experimentally tested candidate structural motifs and identified several previously unknown co-translational interactions. We demonstrate by selective ribosome profiling that domain invasion motifs of beta-propellers, coiled-coils, and short linear motifs act as co-translational assembly domains. Such motifs are often contained in proteins that are members of multiple complexes (moonlighters) and engage with closely related paralogs. Surprisingly, moonlighters and paralogs assembled co-translationally in only one but not all of the relevant assembly pathways. Our results highlight the regulatory complexity of assembly pathways.


2021 ◽  
Author(s):  
Bishoy Wadie ◽  
Vitalii Kleshchevnikov ◽  
Elissavet Sandaltzopoulou ◽  
Caroline Benz ◽  
Evangelia Petsalaki

Linear motifs have an integral role in dynamic cell functions including cell signalling, the cell cycle and others. However, due to their small size, low complexity, degenerate nature, and frequent mutations, identifying novel functional motifs is a challenging task. Viral proteins rely extensively on the molecular mimicry of cellular linear motifs for modifying cell signalling and other processes in ways that favour viral infection. This study aims to discover human linear motifs convergently evolved also in disordered regions of viral proteins, under the hypothesis that these will result in enrichment in functional motif instances. We systematically apply computational motif prediction, combined with implementation of several functional and structural filters to the most recent publicly available human-viral and human-human protein interaction network. By limiting the search space to the sequences of viral proteins, we observed an increase in the sensitivity of motif prediction, as well as improved enrichment in known instances compared to the same analysis using only human protein interactions. We identified > 8,400 motif instances at various confidence levels, 105 of which were supported by all functional and structural filters applied. Overall, we provide a pipeline to improve the identification of functional linear motifs from interactomics datasets and a comprehensive catalogue of putative human motifs that can contribute to our understanding of the human domain-linear motif code and the mechanisms of viral interference with this.


2021 ◽  
Author(s):  
Matthew Watson ◽  
Teresa Almeida ◽  
Arundhati Ray ◽  
Christina Hanack ◽  
Rory Elston ◽  
...  

Signalling requires precise spatial and temporal regulation of molecular interactions, which is frequently orchestrated by disordered scaffolding proteins, such as A-kinase anchoring protein 5 (AKAP5). AKAP5 contains multiple Short Linear Motifs (SLiMs) that assemble the necessary components, including the phosphatase Calcineurin, which is anchored via a well-characterised PxIxIT SLiM. Here we show, using a combination of biochemical and biophysical approaches, that Calcineurin also recognises additional lower-affinity SLiMs C-terminal to the PxIxIT motif. Moreover, we demonstrate that the assembly is in reality a complex system in which AKAP SLiMs spanning a wide affinity range act cooperatively to maintain distinct pools of anchored and more loosely held enzyme, analogous to the well-understood transcription factor search complexes on DNA, and compatible with the requirement for both stable anchoring and responsive downstream signalling. We conclude that the AKAP5 C-terminus is enriched in lower-affinity/mini-SLiMs that cooperate to maintain a structurally disordered but tightly regulated signalosome.


Sign in / Sign up

Export Citation Format

Share Document