Vibration, Buckling and Dynamic Stability of a Cracked Cylindrical Shell with Time-Varying Rotating Speed

2011 ◽  
Vol 39 (4) ◽  
pp. 461-490 ◽  
Author(s):  
Jianqiang Xin ◽  
Jianjun Wang ◽  
Jianyao Yao ◽  
Qinkai Han
AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 1070-1077
Author(s):  
Si-Hyoung Park ◽  
Ji-Hwan Kim

Author(s):  
Yongzhen Liu ◽  
Yimin Zhang

When the ball bearing serving under the combined loading conditions, the ball will roll in and out of the loaded zone periodically. Therefore the bearing stiffness will vary with the position of the ball, which will cause vibration. In order to reveal the vibration mechanism, the quasi static model without raceway control hypothesis is modeled. A two-layer nested iterative algorithm based on Newton–Raphson (N-R) method with dynamic declined factors is presented. The effect of the dispersion of bearing parameters and the installation errors on the time-varying carrying characteristics of the ball-raceway contact and the bearing stiffness are investigated. Numerical simulation illustrates that besides the load and the rotating speed, the dispersion of bearing parameters and the installation errors have noticeable effect on the ball-raceway contact load, ball-inner raceway contact state and bearing stiffness, which should be given full consideration during the process of design and fault diagnosis for the rotor-bearing system.


Engineering ◽  
2011 ◽  
Vol 03 (07) ◽  
pp. 719-725 ◽  
Author(s):  
Costin D. Untaroiu ◽  
Alexandrina Untaroiu ◽  
Mihail Boiangiu

2017 ◽  
Vol 60 (4) ◽  
pp. 508-513 ◽  
Author(s):  
V. N. Bakulin ◽  
E. N. Volkov ◽  
A. I. Simonov

1984 ◽  
Vol 51 (4) ◽  
pp. 852-856 ◽  
Author(s):  
A. Tylikowski

The stability of the undeflected middle surface of a uniform elastic cylindrical shell governed by Ka´rma´n’s equations is studied. The shell is being subjected to a time-varying axial compression as well as a uniformly distributed time-varying radial loading. Using the direct Liapunov method sufficient conditions for deterministic asymptotic as well as stochastic stability are obtained. A relation between stability conditions of a linearized problem and that of Ka´rma´n’s equations is found. Contrary to the stability theory of nonlinear plates it is established that the linearized problem should be modified to ensure the stability of the nonlinear shell. The case when the shell is governed by the Itoˆ stochastic nonlinear equations is also discussed.


Sign in / Sign up

Export Citation Format

Share Document