Mapping multiple tree species classes using a hierarchical procedure with optimized node variables and thresholds based on high spatial resolution satellite data

2020 ◽  
Vol 57 (4) ◽  
pp. 526-542
Author(s):  
Yaoliang Chen ◽  
Shuai Zhao ◽  
Zhuli Xie ◽  
Dengsheng Lu ◽  
Erxue Chen
2020 ◽  
Vol 12 (18) ◽  
pp. 3092 ◽  
Author(s):  
Mathieu Varin ◽  
Bilel Chalghaf ◽  
Gilles Joanisse

Species identification in Quebec, Canada, is usually performed with photo-interpretation at the stand level, and often results in a lack of precision which affects forest management. Very high spatial resolution imagery, such as WorldView-3 and Light Detection and Ranging have the potential to overcome this issue. The main objective of this study is to map 11 tree species at the tree level using an object-based approach. For modeling, 240 variables were derived from WorldView-3 with pixel-based and arithmetic feature calculation techniques. A global approach (11 species) was compared to a hierarchical approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were compared: support vector machine, classification and regression tree, random forest (RF), k-nearest neighbors, and linear discriminant analysis. Each model was assessed using 16-band or first 8-band derived variables, with the results indicating higher precision for the RF technique. Higher accuracies were found using 16-band instead of 8-band derived variables for the global approach (overall accuracy (OA): 75% vs. 71%, Kappa index of agreement (KIA): 0.72 vs. 0.67) and tree type level (OA: 99% vs. 97%, KIA: 0.97 vs. 0.95). For broadleaf individual species, higher accuracy was found using first 8-band derived variables (OA: 70% vs. 68%, KIA: 0.63 vs. 0.60). No distinction was found for individual conifer species (OA: 94%, KIA: 0.93). This paper demonstrates that a hierarchical classification approach gives better results for conifer species and that using an 8-band WorldView-3 instead of a 16-band is sufficient.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1047 ◽  
Author(s):  
Ying Sun ◽  
Jianfeng Huang ◽  
Zurui Ao ◽  
Dazhao Lao ◽  
Qinchuan Xin

The monitoring of tree species diversity is important for forest or wetland ecosystem service maintenance or resource management. Remote sensing is an efficient alternative to traditional field work to map tree species diversity over large areas. Previous studies have used light detection and ranging (LiDAR) and imaging spectroscopy (hyperspectral or multispectral remote sensing) for species richness prediction. The recent development of very high spatial resolution (VHR) RGB images has enabled detailed characterization of canopies and forest structures. In this study, we developed a three-step workflow for mapping tree species diversity, the aim of which was to increase knowledge of tree species diversity assessment using deep learning in a tropical wetland (Haizhu Wetland) in South China based on VHR-RGB images and LiDAR points. Firstly, individual trees were detected based on a canopy height model (CHM, derived from LiDAR points) by the local-maxima-based method in the FUSION software (Version 3.70, Seattle, USA). Then, tree species at the individual tree level were identified via a patch-based image input method, which cropped the RGB images into small patches (the individually detected trees) based on the tree apexes detected. Three different deep learning methods (i.e., AlexNet, VGG16, and ResNet50) were modified to classify the tree species, as they can make good use of the spatial context information. Finally, four diversity indices, namely, the Margalef richness index, the Shannon–Wiener diversity index, the Simpson diversity index, and the Pielou evenness index, were calculated from the fixed subset with a size of 30 × 30 m for assessment. In the classification phase, VGG16 had the best performance, with an overall accuracy of 73.25% for 18 tree species. Based on the classification results, mapping of tree species diversity showed reasonable agreement with field survey data (R2Margalef = 0.4562, root-mean-square error RMSEMargalef = 0.5629; R2Shannon–Wiener = 0.7948, RMSEShannon–Wiener = 0.7202; R2Simpson = 0.7907, RMSESimpson = 0.1038; and R2Pielou = 0.5875, RMSEPielou = 0.3053). While challenges remain for individual tree detection and species classification, the deep-learning-based solution shows potential for mapping tree species diversity.


Sign in / Sign up

Export Citation Format

Share Document