Local spline-approximation method of solving some coefficient inverse problems for differential equation of the parabolic type

2001 ◽  
Vol 9 (5) ◽  
pp. 455-469
Author(s):  
Alexandre Grebennikov
2011 ◽  
Vol 222 ◽  
pp. 353-356
Author(s):  
Sharif E. Guseynov ◽  
Janis S. Rimshans ◽  
Jevgenijs Kaupuzs ◽  
Artur Medvid' ◽  
Daiga Zaime

Coefficient inverse problems are reformulated to a unified integral differential equation. The presented method of conversion of the considered inverse problems to a unified Volterra integral-differential equation gives an opportunity to distribute the acquired results also to analogous inverse problems for non-linear parabolic equations of different types.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2894
Author(s):  
Raul Argun ◽  
Alexandr Gorbachev ◽  
Dmitry Lukyanenko ◽  
Maxim Shishlenin

The work continues a series of articles devoted to the peculiarities of solving coefficient inverse problems for nonlinear singularly perturbed equations of the reaction–diffusion–advection-type with data on the position of the reaction front. In this paper, we place the emphasis on some problems of the numerical solving process. One of the approaches to solving inverse problems of the class under consideration is the use of methods of asymptotic analysis. These methods, under certain conditions, make it possible to construct the so-called reduced formulation of the inverse problem. Usually, a differential equation in this formulation has a lower dimension/order with respect to the differential equation, which is included in the full statement of the inverse problem. In this paper, we consider an example that leads to a reduced formulation of the problem, the solving of which is no less a time-consuming procedure in comparison with the numerical solving of the problem in the full statement. In particular, to obtain an approximate numerical solution, one has to use the methods of the numerical diagnostics of the solution’s blow-up. Thus, it is demonstrated that the possibility of constructing a reduced formulation of the inverse problem does not guarantee its more efficient solving. Moreover, the possibility of constructing a reduced formulation of the problem does not guarantee the existence of an approximate solution that is qualitatively comparable to the true one. In previous works of the authors, it was shown that an acceptable approximate solution can be obtained only for sufficiently small values of the singular parameter included in the full statement of the problem. However, the question of how to proceed if the singular parameter is not small enough remains open. The work also gives an answer to this question.


2019 ◽  
Vol 8 (4) ◽  
pp. 36
Author(s):  
Samir H. Abbas

This paper studies the existence and uniqueness solution of fractional integro-differential equation, by using some numerical graphs with successive approximation method of fractional integro –differential equation. The results of written new program in Mat-Lab show that the method is very interested and efficient. Also we extend the results of Butris [3].


Author(s):  
Andrea Schiaffino ◽  
Alberto Tesei

SynopsisA Volterra integro-partial differential equation of parabolic type, which describes the time evolution of a population in a bounded habitat, subject both to past history and space diffusion effects, is investigated; general homogeneous boundary conditions are admissible. Under suitable conditions, the unique nontrivial nonnegative equilibrium is shown to be globally attractive in the supremum norm. Monotone methods are the main tool of the proof.


Sign in / Sign up

Export Citation Format

Share Document