successive approximation method
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 42)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 11 (24) ◽  
pp. 11774
Author(s):  
Bin Zhen ◽  
Ran Liu

In this paper, a new method is proposed based on the auxiliary system approach to investigate generalized synchronization between two identical neurons with unidirectional coupling. Different from other studies, the synchronization error system between the response and auxiliary systems is converted into a set of Volterra integral equations according to the Laplace transform method and convolution theorem. By using the successive approximation method in the theory of integral equations, an analytical criterion for the detection of generalized synchronization between two identical neurons is obtained. It is found that there is a time difference between two signals of neurons when the generalized synchronization between them is achieved. Furthermore, the value of the time difference has no relation to the generalized synchronization condition but depends on the coupling function between two neurons. The study in this paper shows that one can construct a coupling function between two identical neurons using the current signal of the drive system to predict its future signal or make its past signal reappear.


2021 ◽  
Vol 13 (24) ◽  
pp. 13633
Author(s):  
Oscar Danilo Montoya ◽  
Luis Fernando Grisales-Noreña ◽  
Alberto-Jesus Perea-Moreno

The problem of the optimal siting and sizing of photovoltaic (PV) sources in grid connected distribution networks is addressed in this study with a master–slave optimization approach. In the master optimization stage, a discrete–continuous version of the Chu and Beasley genetic algorithm (DCCBGA) is employed, which defines the optimal locations and sizes for the PV sources. In the slave stage, the successive approximation method is used to evaluate the fitness function value for each individual provided by the master stage. The objective function simultaneously minimizes the energy purchasing costs in the substation bus, and the investment and operating costs for PV sources for a planning period of 20 years. The numerical results of the IEEE 33-bus and 69-bus systems demonstrate that with the proposed optimization methodology, it is possible to eliminate about 27% of the annual operation costs in both systems with optimal locations for the three PV sources. After 100 consecutive evaluations of the DCCBGA, it was observed that 44% of the solutions found by the IEEE 33-bus system were better than those found by the BONMIN solver in the General Algebraic Modeling System (GAMS optimization package). In the case of the IEEE 69-bus system, the DCCBGA ensured, with 55% probability, that solutions with better objective function values than the mean solution value of the GAMS were found. Power generation curves for the slack source confirmed that the optimal siting and sizing of PV sources create the duck curve for the power required to the main grid; in addition, the voltage profile curves for both systems show that voltage regulation was always maintained between ±10% in all the time periods under analysis. All the numerical validations were carried out in the MATLAB programming environment with the GAMS optimization package.


Author(s):  
Wenfeng Sun ◽  
Chen Liu ◽  
Mujun Qian ◽  
Yan Chen ◽  
Shu Xu

AbstractThis paper investigated the spectral efficiency (SE) in massive multiple-input multiple-output systems, where all terminals have no fixed power supply and thus need to replenish energy via the received signals from the base station. The hybrid wireless energy harvesting (EH) protocol is applied for each terminal, which can switch to either existing time-switching (TS) protocol or power-splitting (PS) protocol. Based on the hybrid wireless EH protocol, a general system model is developed, which can switch to either only uplink data transmission or only downlink data transmission. As a result, a general analytical framework is formulated. Then, closed-form lower bound expressions on SE for each terminal are obtained on the uplink and downlink, respectively. According to these expressions, the joint SE of uplink and downlink maximization problem is designed with some practical constraints. As the designed optimization problem is non-linear and non-convex, it is hard to solve directly. To provide a solution, an iteration algorithm is proposed by utilizing one-dimensional search technique and successive approximation method based on geometric program. Additionally, the convergence and complexity of the proposed algorithm are discussed as well. Finally, the feasibility of the proposed algorithm is analyzed by simulations. Numerical results manifest that the proposed algorithm can provide good SE by optimizing relevant system parameters, and the system model can help to discuss the TS, PS or hybrid protocol for only uplink data transmission, only downlink data transmission or joint data transmission of uplink and downlink in the considered system.


Author(s):  
Natalia Romero ◽  
Miguel Hernandez

In this paper, we study the simplest quadratic matrix equation: $\mathcal{Q}(X)=X^2+BX+C=0$. We transform this equation into an equivalent fixed-point equation and based on it we construct the Krasnoselskij method. From this transformation, we can obtain iterative schemes more accurate than successive approximation method. Moreover, under suitable conditions, we establish different results for the existence and localization of a solution for this equation with the Krasnoselskij method. Finally, we see numerically that the predictor-corrector iterative scheme with the Krasnoselskij method as a predictor and the Newton method as corrector method, can improves the numerical application of the Newton method when approximating a solution of the quadratic matrix equation.


2021 ◽  
Vol 57 (7) ◽  
pp. 868-875
Author(s):  
S. V. Gavrilov ◽  
A. M. Denisov

Abstract We consider the inverse problem of determining two unknown coefficients in a linear system of partial differential equations using additional information about one of the solution components. The problem is reduced to a nonlinear operator equation for one of the unknown coefficients. The successive approximation method and the Newton method are used to solve this operator equation numerically. Results of calculations illustrating the convergence of numerical methods for solving the inverse problem are presented.


Author(s):  
Petrus Setyo Prabowo ◽  
Sudi Mungkasi

Riccati differential equations have played important roles in the theory and practice of control systems engineering. Our goal in this paper is to propose a new multistage successive approximation method for solving Riccati differential equations. The multistage successive approximation method is derived from an existing piecewise variational iteration method for solving Riccati differential equations. The multistage successive approximation method is simpler in terms of computing implementation in comparison with the existing piecewise variational iteration method. Computational tests show that the order of accuracy of the multistage successive approximation method can be made higher by simply taking more number of successive iterations in the multistage evolution. Furthermore, taking small size of each subinterval and taking large number of iterations in the multistage evolution lead that our proposed method produces small error and becomes high order accurate.


2021 ◽  
Vol 24 (3) ◽  
pp. 848-864
Author(s):  
Sultan N. Askhabov

Abstract For an integro-differential equation of the convolution type defined on the half-line [0, ∞) with a power nonlinearity and variable coefficient, we use the weight metrics method to prove a global theorem on the existence and uniqueness of a solution in the cone of nonnegative functions in the space C[0, ∞). It is shown that the solution can be found by a successive approximation method of the Picard type; an estimate for the rate of convergence of the approximations is produced. We present sharp two-sided a-priori estimates for the solutions. These estimates enable us to construct a complete metric space which is invariant under the nonlinear convolution operator considered here and to prove that the equation induced by this operator has a unique solution in this space as well as in the class of all non-negative continuous functions vanishing at the origin. Such equations with operators of fractional calculus as the Riemann-Liouville, Erdélyi-Kober, Hadamard fractional integrals arise, in particular, when describing the process of propagation of shock waves in gas-filled pipes, solving the problem about heating a half-infinite body in a nonlinear heat-transfer process, considering models of population genetics, and elsewhere.


Sign in / Sign up

Export Citation Format

Share Document