stable method
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 34)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
An-Wen Deng ◽  
Chih-Ying Gwo

3D Zernike moments based on 3D Zernike polynomials have been successfully applied to the field of voxelized 3D shape retrieval and have attracted more attention in biomedical image processing. As the order of 3D Zernike moments increases, both computational efficiency and numerical accuracy decrease. Due to this phenomenon, a more efficient and stable method for computing high-order 3D Zernike moments was proposed in this study. The proposed recursive formula for computing 3D Zernike radial polynomials combines the recursive calculation of spherical harmonics to develop a voxel-based algorithm for the calculation of 3D Zernike moments. The algorithm was applied to the 3D shape Michelangelo's David with a size of 150×150×150 voxels. As compared to the method without additional acceleration, the proposed method uses a group action of order sixteen orthogonal group and saving unnecessary iterations, the factor of speed-up is 56.783±3.999 when the order of Zernike moments is between 10 and 450. The proposed method also obtained an accurate reconstructed shape with the error rate (normalized mean square error) of 0.00 (4.17×10^-3) when the reconstruction was computed for all moments up to order 450.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ali Shokri ◽  
Higinio Ramos ◽  
Mohammad Mehdizadeh Khalsaraei ◽  
Fikret A. Aliev ◽  
Martin Bohner

AbstractIn this paper, we construct a method with eight steps that belongs to the family of Obrechkoff methods. Due to the explicit nature of the new method, not only does it not require another method as predictor, but it can also be considered as a suitable predictive technique to be used with implicit methods. Periodicity and error terms are studied when applied to solve the radial Schrödinger equation, considering different energy levels. We show its advantages in terms of accuracy, consistency, and convergence in comparison with other methods of the same order appearing in the literature.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1932
Author(s):  
José Julio Conde Mones ◽  
Emmanuel Roberto Estrada Aguayo ◽  
José Jacobo Oliveros Oliveros ◽  
Carlos Arturo Hernández Gracidas ◽  
María Monserrat Morín Castillo

This paper presents a stable method for the identification of sources located on the separation interface of two homogeneous media (where one of them is contained by the other one), from measurement yielded by those sources on the exterior boundary of the media. This is an ill-posed problem because numerical instability is presented, i.e., minimal errors in the measurement can result in significant changes in the solution. To obtain the proposed stable method the identification problem is categorized into three subproblems, two of which present numerical instability and regularization methods must be applied to obtain their solution in a stable form. To manage the numerical instability due to the ill-posedness of these subproblems, the Tikhonov regularization and sequential smoothing methods are used. We illustrate this methodology in a circular and irregular region to demonstrate the feasibility of the proposed method, which yields convergent and stable solutions for input data with and without noise.


2021 ◽  
Vol 63 ◽  
pp. 23-38
Author(s):  
David Galloway ◽  
David J Ivers

DuFort–Frankel averaging is a tactic to stabilize Richardson’s unstable three-level leapfrog timestepping scheme. By including the next time level in the right-hand-side evaluation, it is implicit, but it can be rearranged to give an explicit updating formula, thus apparently giving the best of both worlds. Textbooks prove unconditional stability for the heat equation, and extensive use on a variety of advection–diffusion equations has produced many useful results. Nonetheless, for some problems the scheme can fail in an interesting and surprising way, leading to instability at very long times. An analysis for a simple problem involving a pair of evolution equations that describe the spread of a rabies epidemic gives insight into how this occurs. An even simpler modified diffusion equation suffers from the same instability. Finally, the rabies problem is revisited and a stable method is found for a restricted range of parameter values, although no prescriptive recipe is known which selects this particular choice.   doi:10.1017/S1446181121000043


Sign in / Sign up

Export Citation Format

Share Document